Normalized defining polynomial
\( x^{16} - 3 x^{15} + 5 x^{14} + 3 x^{13} - 21 x^{12} + 33 x^{11} + 17 x^{10} - 105 x^{9} + 301 x^{8} - 315 x^{7} + 153 x^{6} + 891 x^{5} - 1701 x^{4} + 729 x^{3} + 3645 x^{2} - 6561 x + 6561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3498450596935634189769921=3^{12}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{7} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{4}{9} a^{8} - \frac{1}{3} a^{6} - \frac{1}{3} a^{5} - \frac{1}{9} a^{4} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{27} a^{11} - \frac{4}{27} a^{9} - \frac{1}{3} a^{8} - \frac{4}{9} a^{7} - \frac{1}{9} a^{6} + \frac{8}{27} a^{5} + \frac{13}{27} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{2997} a^{12} + \frac{16}{999} a^{11} + \frac{104}{2997} a^{10} - \frac{22}{999} a^{9} + \frac{248}{999} a^{8} - \frac{211}{999} a^{7} - \frac{1081}{2997} a^{6} + \frac{218}{999} a^{5} + \frac{850}{2997} a^{4} + \frac{368}{999} a^{3} - \frac{7}{37} a^{2} - \frac{49}{111} a + \frac{9}{37}$, $\frac{1}{8991} a^{13} + \frac{131}{8991} a^{11} - \frac{7}{999} a^{10} + \frac{194}{2997} a^{9} - \frac{793}{2997} a^{8} - \frac{1666}{8991} a^{7} - \frac{89}{333} a^{6} + \frac{94}{8991} a^{5} - \frac{911}{2997} a^{4} + \frac{413}{999} a^{3} + \frac{71}{333} a^{2} + \frac{53}{111} a + \frac{4}{37}$, $\frac{1}{26973} a^{14} - \frac{4}{26973} a^{12} + \frac{50}{2997} a^{11} - \frac{490}{8991} a^{10} - \frac{1153}{8991} a^{9} + \frac{2789}{26973} a^{8} + \frac{301}{999} a^{7} + \frac{8167}{26973} a^{6} + \frac{3292}{8991} a^{5} + \frac{317}{2997} a^{4} - \frac{28}{333} a^{3} - \frac{38}{333} a^{2} - \frac{38}{111} a + \frac{13}{37}$, $\frac{1}{32934033} a^{15} - \frac{80}{10978011} a^{14} - \frac{1723}{32934033} a^{13} + \frac{587}{10978011} a^{12} - \frac{137905}{10978011} a^{11} + \frac{5873}{10978011} a^{10} - \frac{4230631}{32934033} a^{9} - \frac{2567395}{10978011} a^{8} + \frac{9456592}{32934033} a^{7} + \frac{1712261}{10978011} a^{6} + \frac{1496422}{3659337} a^{5} - \frac{15551}{1219779} a^{4} + \frac{5961}{15059} a^{3} - \frac{4401}{15059} a^{2} - \frac{4308}{15059} a - \frac{7496}{15059}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1108264.92903 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T157):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{37}) \), 4.4.455877.1, 8.2.623471517387.2 x2, 8.4.1870414552161.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 3.4.3.2 | $x^{4} - 3$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |