Normalized defining polynomial
\( x^{16} - 8 x^{15} + 18 x^{14} + 14 x^{13} - 75 x^{12} - 96 x^{11} + 301 x^{10} + 662 x^{9} + 198 x^{8} - 8108 x^{7} + 11425 x^{6} + 360 x^{5} - 3372 x^{4} - 6392 x^{3} + 2064 x^{2} + 3008 x + 4288 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3498450596935634189769921=3^{12}\cdot 37^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.20$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{592} a^{12} - \frac{3}{296} a^{11} + \frac{31}{592} a^{10} + \frac{3}{37} a^{9} - \frac{17}{148} a^{8} + \frac{33}{296} a^{7} + \frac{53}{592} a^{6} + \frac{35}{296} a^{5} + \frac{43}{592} a^{4} + \frac{107}{296} a^{3} + \frac{29}{148} a^{2} + \frac{3}{74} a + \frac{11}{37}$, $\frac{1}{592} a^{13} - \frac{5}{592} a^{11} + \frac{3}{148} a^{10} - \frac{1}{296} a^{9} - \frac{23}{296} a^{8} + \frac{5}{592} a^{7} - \frac{7}{74} a^{6} - \frac{129}{592} a^{5} - \frac{23}{296} a^{4} - \frac{3}{296} a^{3} - \frac{21}{74} a^{2} + \frac{3}{74} a - \frac{8}{37}$, $\frac{1}{3981580064} a^{14} - \frac{1}{568797152} a^{13} - \frac{1420145}{3981580064} a^{12} + \frac{501233}{234210592} a^{11} - \frac{377787}{16729328} a^{10} + \frac{185728777}{1990790032} a^{9} + \frac{69364931}{3981580064} a^{8} - \frac{421684159}{3981580064} a^{7} + \frac{280468899}{3981580064} a^{6} - \frac{885306333}{3981580064} a^{5} - \frac{194623371}{995395016} a^{4} - \frac{2098717}{7319081} a^{3} - \frac{38996310}{124424377} a^{2} - \frac{4530969}{124424377} a - \frac{8898283}{124424377}$, $\frac{1}{75088618426976} a^{15} + \frac{673}{5363472744784} a^{14} - \frac{18075905949}{37544309213488} a^{13} + \frac{15668383707}{37544309213488} a^{12} + \frac{680118033}{90142399072} a^{11} - \frac{516588305559}{37544309213488} a^{10} - \frac{8329650657175}{75088618426976} a^{9} + \frac{1386412617945}{18772154606744} a^{8} - \frac{602047659309}{37544309213488} a^{7} + \frac{81306565077}{18772154606744} a^{6} + \frac{11129820065785}{75088618426976} a^{5} - \frac{8231224363819}{37544309213488} a^{4} - \frac{4857675686}{2346519325843} a^{3} + \frac{1641390361855}{9386077303372} a^{2} + \frac{1250891990043}{4693038651686} a + \frac{121235049132}{335217046549}$
Class group and class number
$C_{2}\times C_{8}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4530209}{46123229992} a^{15} - \frac{67953135}{92246459984} a^{14} + \frac{108394345}{92246459984} a^{13} + \frac{326059305}{92246459984} a^{12} - \frac{45858481}{5426262352} a^{11} - \frac{783126993}{46123229992} a^{10} + \frac{1399553513}{46123229992} a^{9} + \frac{9389550963}{92246459984} a^{8} + \frac{3984310193}{92246459984} a^{7} - \frac{82702181595}{92246459984} a^{6} + \frac{42016992569}{92246459984} a^{5} + \frac{35496571503}{23061614996} a^{4} - \frac{55397886083}{46123229992} a^{3} - \frac{7237070979}{23061614996} a^{2} - \frac{517958041}{5765403749} a + \frac{3899189587}{5765403749} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 292944.962933 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{-111}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{37}) \), 4.2.151959.1 x2, \(\Q(\sqrt{-3}, \sqrt{37})\), 4.0.455877.1 x2, 8.0.207823839129.2, 8.0.50551744653.1 x2, 8.0.1870414552161.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ |
| 3.8.6.2 | $x^{8} + 4 x^{7} + 14 x^{6} + 28 x^{5} + 43 x^{4} + 44 x^{3} + 110 x^{2} + 92 x + 22$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $37$ | 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 37.4.3.2 | $x^{4} - 148$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |