Normalized defining polynomial
\( x^{16} - 4 x^{15} + 88 x^{14} - 216 x^{13} + 3132 x^{12} - 6396 x^{11} + 57440 x^{10} - 119824 x^{9} + 605820 x^{8} - 1276532 x^{7} + 3801328 x^{6} - 6196184 x^{5} + 10434076 x^{4} - 11087660 x^{3} + 11409096 x^{2} - 6736240 x + 3398063 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3480707415024772072868946116608=2^{40}\cdot 41^{4}\cdot 73^{3}\cdot 1697^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $81.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 41, 73, 1697$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{6}$, $\frac{1}{935552763998631959513780615467952296899023786203970} a^{15} - \frac{12936615776898691944073340758915025161613036862640}{93555276399863195951378061546795229689902378620397} a^{14} - \frac{111360996198957843555909752886489455420522993411667}{935552763998631959513780615467952296899023786203970} a^{13} + \frac{44039972025503971493970351172760620963057114998998}{467776381999315979756890307733976148449511893101985} a^{12} - \frac{85241784892556155913454091538463375621752974535979}{935552763998631959513780615467952296899023786203970} a^{11} + \frac{14356945723350889350588562397802493413945241251439}{467776381999315979756890307733976148449511893101985} a^{10} + \frac{42982338716212234763638030103157054435592529314841}{467776381999315979756890307733976148449511893101985} a^{9} + \frac{216629727425912324567481408766339173687418595706869}{935552763998631959513780615467952296899023786203970} a^{8} - \frac{50113623425147784600566030681617000560078292883539}{935552763998631959513780615467952296899023786203970} a^{7} + \frac{48295218456437935971067676279598452912188917476491}{467776381999315979756890307733976148449511893101985} a^{6} - \frac{360464944752220390385124877508191128950183501866699}{935552763998631959513780615467952296899023786203970} a^{5} + \frac{2077208886801711890372166053015622113775295562708}{13365039485694742278768294506685032812843196945771} a^{4} - \frac{229803715465788034203322668300037194448530189004479}{935552763998631959513780615467952296899023786203970} a^{3} - \frac{31389561718634955742762701052193794909319511928529}{66825197428473711393841472533425164064215984728855} a^{2} + \frac{87500135297740795710113182711495905787371476571101}{467776381999315979756890307733976148449511893101985} a + \frac{462313358013619167181588291666137015563215113847333}{935552763998631959513780615467952296899023786203970}$
Class group and class number
$C_{2}\times C_{2}\times C_{4646}$, which has order $18584$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 26238.1534853 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16384 |
| The 148 conjugacy class representatives for t16n1781 are not computed |
| Character table for t16n1781 is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), 4.4.2624.1, 8.8.8042119168.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $41$ | 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.8.4.1 | $x^{8} + 57154 x^{4} - 68921 x^{2} + 816644929$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $73$ | 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 73.4.3.3 | $x^{4} + 365$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 73.4.0.1 | $x^{4} - x + 13$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 1697 | Data not computed | ||||||