Normalized defining polynomial
\( x^{16} - 4 x^{15} + 29 x^{14} - 88 x^{13} + 386 x^{12} - 916 x^{11} + 2866 x^{10} - 5307 x^{9} + 12495 x^{8} - 16545 x^{7} + 29363 x^{6} - 17395 x^{5} + 24954 x^{4} + 30159 x^{3} - 16340 x^{2} + 53788 x + 132119 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3455222492240908603515625=5^{10}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{91} a^{14} - \frac{4}{13} a^{13} + \frac{40}{91} a^{12} - \frac{12}{91} a^{11} - \frac{1}{7} a^{10} - \frac{43}{91} a^{9} + \frac{24}{91} a^{8} - \frac{4}{13} a^{7} + \frac{33}{91} a^{6} - \frac{12}{91} a^{5} + \frac{12}{91} a^{4} - \frac{2}{13} a^{3} - \frac{23}{91} a^{2} + \frac{16}{91} a + \frac{2}{7}$, $\frac{1}{2512109953478184473267736025843973} a^{15} + \frac{256331515359886360776780346946}{193239227190629574866748925064921} a^{14} - \frac{1178486039782653467008329141801316}{2512109953478184473267736025843973} a^{13} + \frac{1073177927799414171046679578229658}{2512109953478184473267736025843973} a^{12} + \frac{85570991058108041555260480632542}{358872850496883496181105146549139} a^{11} - \frac{1173369313532784070892745775663253}{2512109953478184473267736025843973} a^{10} - \frac{4661646485377385346415387596347}{358872850496883496181105146549139} a^{9} - \frac{908294696783645777766398069312682}{2512109953478184473267736025843973} a^{8} - \frac{1209809985574344342879977770315036}{2512109953478184473267736025843973} a^{7} + \frac{824873809129106069359236640323428}{2512109953478184473267736025843973} a^{6} - \frac{1174174078513039066560799578601672}{2512109953478184473267736025843973} a^{5} + \frac{521066872952142087083811549536685}{2512109953478184473267736025843973} a^{4} - \frac{454495148994366240824539779325437}{2512109953478184473267736025843973} a^{3} + \frac{794637067985948926289991817011631}{2512109953478184473267736025843973} a^{2} + \frac{316035340669968374603716558201243}{2512109953478184473267736025843973} a - \frac{32747010367812571210269891667996}{193239227190629574866748925064921}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 53193.9176201 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.4205.1, 4.0.609725.2, 4.0.121945.1, 8.4.88410125.1, 8.4.1858822878125.1, 8.0.371764575625.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.4 | $x^{4} + 40$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.8.4.1 | $x^{8} + 10 x^{6} + 125 x^{4} + 2500$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 29 | Data not computed | ||||||