Normalized defining polynomial
\( x^{16} - 3 x^{15} - 3 x^{14} + 12 x^{13} - 19 x^{12} + 100 x^{11} - 70 x^{10} + 95 x^{9} - 90 x^{8} - 1065 x^{7} + 3906 x^{6} - 6078 x^{5} + 6817 x^{4} - 7738 x^{3} + 11971 x^{2} - 13835 x + 7295 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3455222492240908603515625=5^{10}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{3} a^{8} - \frac{1}{3}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{15} a^{10} + \frac{1}{15} a^{9} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{1}{15} a^{2} + \frac{1}{3} a$, $\frac{1}{90} a^{11} - \frac{1}{30} a^{10} - \frac{7}{45} a^{9} + \frac{7}{45} a^{8} + \frac{1}{3} a^{7} - \frac{1}{10} a^{6} + \frac{7}{30} a^{5} - \frac{7}{15} a^{4} + \frac{13}{45} a^{3} - \frac{2}{5} a^{2} + \frac{7}{18} a - \frac{1}{18}$, $\frac{1}{270} a^{12} - \frac{1}{270} a^{11} - \frac{1}{135} a^{10} - \frac{13}{135} a^{9} - \frac{16}{135} a^{8} + \frac{11}{90} a^{7} - \frac{23}{90} a^{6} + \frac{1}{3} a^{5} + \frac{5}{27} a^{4} - \frac{19}{135} a^{3} + \frac{7}{54} a^{2} + \frac{19}{54} a + \frac{8}{27}$, $\frac{1}{810} a^{13} - \frac{1}{270} a^{11} - \frac{1}{81} a^{10} - \frac{4}{81} a^{9} + \frac{1}{810} a^{8} + \frac{7}{45} a^{7} + \frac{133}{270} a^{6} - \frac{13}{81} a^{5} - \frac{5}{27} a^{4} - \frac{109}{270} a^{3} + \frac{56}{405} a^{2} - \frac{55}{162} a - \frac{19}{81}$, $\frac{1}{36231300} a^{14} + \frac{421}{36231300} a^{13} + \frac{2917}{6038550} a^{12} + \frac{3683}{5175900} a^{11} - \frac{155333}{36231300} a^{10} - \frac{151253}{1341900} a^{9} + \frac{4341553}{36231300} a^{8} - \frac{104687}{3019275} a^{7} - \frac{12706993}{36231300} a^{6} + \frac{7116239}{36231300} a^{5} - \frac{1480939}{4025700} a^{4} - \frac{10042343}{36231300} a^{3} - \frac{5364983}{18115650} a^{2} - \frac{4339}{115020} a + \frac{2087761}{7246260}$, $\frac{1}{18559048649400} a^{15} + \frac{27613}{9279524324700} a^{14} - \frac{82056103}{261395051400} a^{13} - \frac{29330143909}{18559048649400} a^{12} + \frac{733165981}{257764564575} a^{11} - \frac{295738418}{39320018325} a^{10} - \frac{203432990143}{1325646332100} a^{9} - \frac{77483822099}{18559048649400} a^{8} + \frac{4678994671067}{18559048649400} a^{7} + \frac{2895889593797}{9279524324700} a^{6} + \frac{187156274968}{2319881081175} a^{5} - \frac{1247677378249}{9279524324700} a^{4} - \frac{216431730283}{687372172200} a^{3} + \frac{262324849369}{3711809729880} a^{2} - \frac{56060675653}{463976216235} a - \frac{268168794079}{742361945976}$
Class group and class number
$C_{3}\times C_{12}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 73371.5821514 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{29}) \), 4.0.121945.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 4.0.609725.1 x2, 8.0.371764575625.3 x2, 8.4.64097340625.2 x2, 8.0.371764575625.5 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.2.1.1 | $x^{2} - 5$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $29$ | 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 29.8.6.1 | $x^{8} - 203 x^{4} + 68121$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |