Normalized defining polynomial
\( x^{16} - 2 x^{15} + 6 x^{14} + 8 x^{13} + 9 x^{12} + 62 x^{11} + 657 x^{10} - 416 x^{9} - 2247 x^{8} + 2722 x^{7} + 5093 x^{6} - 5996 x^{5} - 1956 x^{4} + 5684 x^{3} - 2001 x^{2} - 1624 x + 1856 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3455222492240908603515625=5^{10}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{4} a^{4} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} + \frac{1}{8} a$, $\frac{1}{8} a^{9} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} + \frac{1}{8} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{40} a^{10} + \frac{1}{40} a^{9} - \frac{1}{40} a^{8} - \frac{1}{20} a^{7} + \frac{1}{10} a^{6} + \frac{1}{5} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{17}{40} a^{2} - \frac{1}{4} a + \frac{2}{5}$, $\frac{1}{40} a^{11} - \frac{1}{20} a^{9} - \frac{1}{40} a^{8} - \frac{1}{10} a^{7} + \frac{1}{10} a^{6} + \frac{7}{40} a^{5} - \frac{9}{20} a^{3} - \frac{7}{40} a^{2} - \frac{1}{10} a - \frac{2}{5}$, $\frac{1}{480} a^{12} - \frac{1}{80} a^{11} - \frac{1}{480} a^{10} + \frac{1}{40} a^{9} + \frac{7}{160} a^{8} + \frac{13}{240} a^{7} + \frac{17}{480} a^{6} + \frac{3}{40} a^{5} + \frac{67}{480} a^{4} + \frac{113}{240} a^{3} + \frac{41}{96} a^{2} + \frac{17}{120} a + \frac{1}{15}$, $\frac{1}{480} a^{13} - \frac{1}{480} a^{11} - \frac{1}{80} a^{10} + \frac{3}{160} a^{9} + \frac{1}{60} a^{8} + \frac{53}{480} a^{7} - \frac{1}{80} a^{6} - \frac{41}{480} a^{5} - \frac{1}{15} a^{4} - \frac{227}{480} a^{3} + \frac{1}{240} a^{2} + \frac{11}{30} a - \frac{1}{5}$, $\frac{1}{960} a^{14} - \frac{1}{960} a^{13} - \frac{11}{960} a^{11} - \frac{1}{96} a^{10} - \frac{13}{960} a^{9} + \frac{1}{32} a^{8} - \frac{7}{64} a^{7} + \frac{11}{160} a^{6} - \frac{29}{320} a^{5} + \frac{43}{240} a^{4} + \frac{79}{192} a^{3} + \frac{451}{960} a^{2} + \frac{19}{40} a - \frac{4}{15}$, $\frac{1}{1200652676010782400} a^{15} - \frac{51873479265253}{240130535202156480} a^{14} + \frac{91492530590897}{150081584501347800} a^{13} + \frac{93138134016617}{240130535202156480} a^{12} - \frac{3672011844663913}{600326338005391200} a^{11} + \frac{809359843969813}{80043511734052160} a^{10} - \frac{20376278501402329}{600326338005391200} a^{9} - \frac{20603292637688539}{400217558670260800} a^{8} - \frac{16215830257672541}{200108779335130400} a^{7} - \frac{578054057746319}{11434787390578880} a^{6} - \frac{43636295512640333}{300163169002695600} a^{5} + \frac{7877716842814915}{48026107040431296} a^{4} + \frac{468966233846386379}{1200652676010782400} a^{3} + \frac{32874706020397277}{75040792250673900} a^{2} + \frac{1305374416842109}{37520396125336950} a + \frac{6113706032408458}{18760198062668475}$
Class group and class number
$C_{3}\times C_{12}$, which has order $36$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 119871.996246 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.D_4$ (as 16T33):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^2.D_4$ |
| Character table for $C_2^2.D_4$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{145}) \), \(\Q(\sqrt{29}) \), 4.0.121945.1 x2, \(\Q(\sqrt{5}, \sqrt{29})\), 4.0.609725.1 x2, 8.0.371764575625.2 x2, 8.0.371764575625.5, 8.4.64097340625.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.3.2 | $x^{4} - 20$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $29$ | 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |