Normalized defining polynomial
\( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 811 x^{12} - 2318 x^{11} + 5781 x^{10} - 12042 x^{9} + 21965 x^{8} - 33670 x^{7} + 43848 x^{6} - 46567 x^{5} + 40381 x^{4} - 27165 x^{3} + 14386 x^{2} - 5231 x + 1379 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3455222492240908603515625=5^{10}\cdot 29^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.17$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{24942595223} a^{14} - \frac{1}{3563227889} a^{13} - \frac{4019059872}{24942595223} a^{12} - \frac{828235900}{24942595223} a^{11} + \frac{1315359537}{3563227889} a^{10} + \frac{7282669697}{24942595223} a^{9} - \frac{9828256514}{24942595223} a^{8} + \frac{11449008483}{24942595223} a^{7} - \frac{3957482665}{24942595223} a^{6} + \frac{6510206587}{24942595223} a^{5} + \frac{7186904750}{24942595223} a^{4} + \frac{918039842}{3563227889} a^{3} - \frac{8655570715}{24942595223} a^{2} + \frac{4168615725}{24942595223} a + \frac{179877452}{3563227889}$, $\frac{1}{145889239459327} a^{15} + \frac{2917}{145889239459327} a^{14} + \frac{57264179551668}{145889239459327} a^{13} + \frac{53696810563524}{145889239459327} a^{12} + \frac{342603952206}{843290401499} a^{11} + \frac{25358678173964}{145889239459327} a^{10} - \frac{25532553296057}{145889239459327} a^{9} - \frac{2835959196979}{145889239459327} a^{8} - \frac{33921948970919}{145889239459327} a^{7} + \frac{62813649849113}{145889239459327} a^{6} + \frac{21936372011006}{145889239459327} a^{5} - \frac{57348698422772}{145889239459327} a^{4} + \frac{66696509338724}{145889239459327} a^{3} + \frac{1852432183585}{11222249189179} a^{2} - \frac{27418549692060}{145889239459327} a - \frac{5057616432415}{20841319922761}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 102675.602937 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{29}) \), 4.4.4205.1, 4.0.24389.1, 4.0.121945.1, 8.4.2210253125.1, 8.4.1858822878125.1, 8.0.14870583025.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 5.4.2.2 | $x^{4} - 5 x^{2} + 50$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 29 | Data not computed | ||||||