Properties

Label 16.0.34552224922...5625.2
Degree $16$
Signature $[0, 8]$
Discriminant $5^{10}\cdot 29^{12}$
Root discriminant $34.17$
Ramified primes $5, 29$
Class number $12$ (GRH)
Class group $[12]$ (GRH)
Galois group $(C_2\times C_4).D_4$ (as 16T121)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![49, -182, 2273, -301, 8584, -13531, 13331, -3382, 4750, 217, 1214, -59, 268, -39, 29, -3, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 3*x^15 + 29*x^14 - 39*x^13 + 268*x^12 - 59*x^11 + 1214*x^10 + 217*x^9 + 4750*x^8 - 3382*x^7 + 13331*x^6 - 13531*x^5 + 8584*x^4 - 301*x^3 + 2273*x^2 - 182*x + 49)
 
gp: K = bnfinit(x^16 - 3*x^15 + 29*x^14 - 39*x^13 + 268*x^12 - 59*x^11 + 1214*x^10 + 217*x^9 + 4750*x^8 - 3382*x^7 + 13331*x^6 - 13531*x^5 + 8584*x^4 - 301*x^3 + 2273*x^2 - 182*x + 49, 1)
 

Normalized defining polynomial

\( x^{16} - 3 x^{15} + 29 x^{14} - 39 x^{13} + 268 x^{12} - 59 x^{11} + 1214 x^{10} + 217 x^{9} + 4750 x^{8} - 3382 x^{7} + 13331 x^{6} - 13531 x^{5} + 8584 x^{4} - 301 x^{3} + 2273 x^{2} - 182 x + 49 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3455222492240908603515625=5^{10}\cdot 29^{12}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.17$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{5} a^{14} + \frac{1}{5} a^{13} - \frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{1}{5} a^{10} - \frac{2}{5} a^{8} - \frac{1}{5} a^{7} - \frac{1}{5} a^{6} - \frac{2}{5} a^{5} + \frac{2}{5} a^{4} + \frac{1}{5} a^{2} - \frac{2}{5} a + \frac{1}{5}$, $\frac{1}{1164022922247121653764618322815} a^{15} + \frac{102255945645954819442594927382}{1164022922247121653764618322815} a^{14} + \frac{71489337024743871348167839762}{232804584449424330752923664563} a^{13} - \frac{447675129054182124777274091013}{1164022922247121653764618322815} a^{12} - \frac{82318027353134383929111290778}{1164022922247121653764618322815} a^{11} + \frac{19249604187375984765698794254}{1164022922247121653764618322815} a^{10} - \frac{575267354865202550524405906002}{1164022922247121653764618322815} a^{9} + \frac{24525629376252019842889926211}{166288988892445950537802617545} a^{8} + \frac{453496352637515191964558862883}{1164022922247121653764618322815} a^{7} + \frac{89590334855682504276153228192}{1164022922247121653764618322815} a^{6} + \frac{50740960336864250307598795991}{232804584449424330752923664563} a^{5} - \frac{18977646092080077073286166779}{166288988892445950537802617545} a^{4} + \frac{280880064391725794183698509981}{1164022922247121653764618322815} a^{3} + \frac{14765930837285515562092033642}{166288988892445950537802617545} a^{2} + \frac{103716171895833139296801617874}{1164022922247121653764618322815} a - \frac{42825429948298295273382896317}{166288988892445950537802617545}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{12}$, which has order $12$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 23027.9434773 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$(C_2\times C_4).D_4$ (as 16T121):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 28 conjugacy class representatives for $(C_2\times C_4).D_4$
Character table for $(C_2\times C_4).D_4$ is not computed

Intermediate fields

\(\Q(\sqrt{29}) \), 4.0.609725.2, 4.4.4205.1, 4.0.121945.1, 8.4.74352915125.1, 8.4.2210253125.1, 8.0.371764575625.4

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ R ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.3.3$x^{4} + 10$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.3$x^{4} + 10$$4$$1$$3$$C_4$$[\ ]_{4}$
5.8.4.1$x^{8} + 10 x^{6} + 125 x^{4} + 2500$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
29Data not computed