Properties

Label 16.0.34456390817...3536.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{4}\cdot 19^{10}\cdot 37^{8}$
Root discriminant $45.56$
Ramified primes $2, 19, 37$
Class number $20$ (GRH)
Class group $[2, 10]$ (GRH)
Galois group $C_2^3.Q_8.C_6$ (as 16T732)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![949, 2596, 4562, 2727, 2347, -985, 1273, -375, 1017, -18, 25, 147, -17, 17, 4, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 + 4*x^14 + 17*x^13 - 17*x^12 + 147*x^11 + 25*x^10 - 18*x^9 + 1017*x^8 - 375*x^7 + 1273*x^6 - 985*x^5 + 2347*x^4 + 2727*x^3 + 4562*x^2 + 2596*x + 949)
 
gp: K = bnfinit(x^16 - x^15 + 4*x^14 + 17*x^13 - 17*x^12 + 147*x^11 + 25*x^10 - 18*x^9 + 1017*x^8 - 375*x^7 + 1273*x^6 - 985*x^5 + 2347*x^4 + 2727*x^3 + 4562*x^2 + 2596*x + 949, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} + 4 x^{14} + 17 x^{13} - 17 x^{12} + 147 x^{11} + 25 x^{10} - 18 x^{9} + 1017 x^{8} - 375 x^{7} + 1273 x^{6} - 985 x^{5} + 2347 x^{4} + 2727 x^{3} + 4562 x^{2} + 2596 x + 949 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(344563908178469207780603536=2^{4}\cdot 19^{10}\cdot 37^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $45.56$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 19, 37$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{2469025602467226958654086883} a^{15} - \frac{76473672278253751378471361}{2469025602467226958654086883} a^{14} + \frac{1134358007485208179719752253}{2469025602467226958654086883} a^{13} - \frac{445771498283534480916368944}{2469025602467226958654086883} a^{12} + \frac{1005113669530973435428240040}{2469025602467226958654086883} a^{11} - \frac{1150667928840565695453447719}{2469025602467226958654086883} a^{10} + \frac{213367335592869277155604669}{2469025602467226958654086883} a^{9} - \frac{692297253895225355892672230}{2469025602467226958654086883} a^{8} - \frac{309746519834985293028981543}{2469025602467226958654086883} a^{7} - \frac{589243619319874392611899700}{2469025602467226958654086883} a^{6} + \frac{207979939134472262844937315}{2469025602467226958654086883} a^{5} + \frac{913842949056476859569957069}{2469025602467226958654086883} a^{4} - \frac{1144479311999607733476890784}{2469025602467226958654086883} a^{3} - \frac{436362858919977288244042870}{2469025602467226958654086883} a^{2} + \frac{674470678883596603604541974}{2469025602467226958654086883} a - \frac{1141665308768009031830884293}{2469025602467226958654086883}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 168824.791868 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.Q_8.C_6$ (as 16T732):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 384
The 30 conjugacy class representatives for $C_2^3.Q_8.C_6$
Character table for $C_2^3.Q_8.C_6$ is not computed

Intermediate fields

4.4.494209.1, 8.8.244242535681.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 sibling: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ R ${\href{/LocalNumberField/23.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.4.2$x^{4} - x^{2} + 5$$2$$2$$4$$C_4$$[2]^{2}$
2.12.0.1$x^{12} - 26 x^{10} + 275 x^{8} - 1500 x^{6} + 4375 x^{4} - 6250 x^{2} + 7221$$1$$12$$0$$C_{12}$$[\ ]^{12}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.6.5.4$x^{6} + 76$$6$$1$$5$$C_6$$[\ ]_{6}$
19.6.5.4$x^{6} + 76$$6$$1$$5$$C_6$$[\ ]_{6}$
$37$37.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
37.12.8.1$x^{12} - 111 x^{9} + 4107 x^{6} - 50653 x^{3} + 14993288$$3$$4$$8$$C_{12}$$[\ ]_{3}^{4}$