Normalized defining polynomial
\( x^{16} + 1040 x^{14} + 439400 x^{12} + 96668000 x^{10} + 11781412500 x^{8} + 779715300000 x^{6} + 25340747250000 x^{4} + 313742585000000 x^{2} + 102812781061250 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3438190509295256478027799611834368000000000000=2^{79}\cdot 5^{12}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $701.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4160=2^{6}\cdot 5\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4160}(1,·)$, $\chi_{4160}(707,·)$, $\chi_{4160}(649,·)$, $\chi_{4160}(203,·)$, $\chi_{4160}(1041,·)$, $\chi_{4160}(1747,·)$, $\chi_{4160}(1689,·)$, $\chi_{4160}(1243,·)$, $\chi_{4160}(2081,·)$, $\chi_{4160}(2787,·)$, $\chi_{4160}(2729,·)$, $\chi_{4160}(2283,·)$, $\chi_{4160}(3121,·)$, $\chi_{4160}(3827,·)$, $\chi_{4160}(3769,·)$, $\chi_{4160}(3323,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{65} a^{4}$, $\frac{1}{65} a^{5}$, $\frac{1}{65} a^{6}$, $\frac{1}{65} a^{7}$, $\frac{1}{24205025} a^{8} + \frac{8}{372385} a^{6} + \frac{20}{5729} a^{4} + \frac{1040}{5729} a^{2} + \frac{2721}{5729}$, $\frac{1}{41075927425} a^{9} - \frac{896014}{126387469} a^{7} + \frac{641908}{126387469} a^{5} - \frac{3304593}{9722113} a^{3} + \frac{4379677}{9722113} a$, $\frac{1}{41075927425} a^{10} + \frac{2}{126387469} a^{8} - \frac{91196}{126387469} a^{6} - \frac{3510166}{631937345} a^{4} + \frac{249742}{571889} a^{2} - \frac{1358}{5729}$, $\frac{1}{41075927425} a^{11} + \frac{4677733}{631937345} a^{7} + \frac{543129}{631937345} a^{5} + \frac{3644091}{9722113} a^{3} - \frac{515467}{9722113} a$, $\frac{1}{2669935282625} a^{12} + \frac{801}{41075927425} a^{8} - \frac{840469}{126387469} a^{6} - \frac{46884}{631937345} a^{4} + \frac{628993}{9722113} a^{2} + \frac{185}{5729}$, $\frac{1}{2669935282625} a^{13} - \frac{3125972}{631937345} a^{7} - \frac{4250592}{631937345} a^{5} + \frac{3193250}{9722113} a^{3} + \frac{1875461}{9722113} a$, $\frac{1}{2669935282625} a^{14} + \frac{418}{41075927425} a^{8} - \frac{2334679}{631937345} a^{6} - \frac{1235933}{631937345} a^{4} - \frac{1830787}{9722113} a^{2} - \frac{558}{5729}$, $\frac{1}{2669935282625} a^{15} + \frac{737777}{126387469} a^{7} - \frac{1172059}{631937345} a^{5} - \frac{1050959}{9722113} a^{3} - \frac{3894668}{9722113} a$
Class group and class number
$C_{3}\times C_{3}\times C_{12}\times C_{13442124}$, which has order $1451749392$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23041805.370027676 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.38333925294080000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/17.1.0.1}{1} }^{16}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 13 | Data not computed | ||||||