Normalized defining polynomial
\( x^{16} - x^{15} + 9 x^{14} - 17 x^{13} + 24 x^{12} - 19 x^{11} - 134 x^{10} + 207 x^{9} - 379 x^{8} - 130 x^{7} + 1805 x^{6} - 2800 x^{5} + 5175 x^{4} - 2625 x^{3} + 3000 x^{2} + 625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(343361479062744140625=3^{8}\cdot 5^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{10} a^{10} + \frac{2}{5} a^{9} + \frac{2}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{10} a^{5} - \frac{2}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2}$, $\frac{1}{10} a^{11} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{2} a^{6} + \frac{1}{5} a^{5} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{50} a^{12} - \frac{1}{50} a^{11} - \frac{1}{50} a^{10} + \frac{9}{25} a^{9} - \frac{8}{25} a^{8} + \frac{1}{50} a^{7} + \frac{1}{50} a^{6} - \frac{3}{50} a^{5} - \frac{7}{25} a^{4} - \frac{1}{10} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{50} a^{13} - \frac{1}{25} a^{11} + \frac{1}{25} a^{10} - \frac{4}{25} a^{9} - \frac{1}{2} a^{8} - \frac{9}{25} a^{7} - \frac{6}{25} a^{6} + \frac{9}{25} a^{5} - \frac{2}{25} a^{4} + \frac{3}{10} a^{3} - \frac{2}{5} a^{2}$, $\frac{1}{4750} a^{14} - \frac{8}{2375} a^{13} + \frac{7}{2375} a^{12} + \frac{104}{2375} a^{11} - \frac{211}{4750} a^{10} + \frac{2241}{4750} a^{9} + \frac{318}{2375} a^{8} + \frac{391}{2375} a^{7} - \frac{747}{2375} a^{6} - \frac{93}{950} a^{5} + \frac{439}{950} a^{4} + \frac{46}{95} a^{3} - \frac{16}{95} a^{2} - \frac{6}{19} a + \frac{17}{38}$, $\frac{1}{23492252179772092250} a^{15} + \frac{486966672787817}{11746126089886046125} a^{14} - \frac{55595153494997871}{23492252179772092250} a^{13} + \frac{52267954417405124}{11746126089886046125} a^{12} + \frac{1026214723876716119}{23492252179772092250} a^{11} - \frac{50786957781052901}{1236434325251162750} a^{10} + \frac{245105897702332472}{618217162625581375} a^{9} + \frac{1420357183987798517}{23492252179772092250} a^{8} - \frac{5586602614937809612}{11746126089886046125} a^{7} + \frac{1600240181910993699}{4698450435954418450} a^{6} - \frac{1254589311069796791}{4698450435954418450} a^{5} + \frac{443838869210047908}{2349225217977209225} a^{4} + \frac{28676612339975777}{187938017438176738} a^{3} + \frac{25383144111194076}{469845043595441845} a^{2} - \frac{63724685892344701}{187938017438176738} a + \frac{9285476478628844}{93969008719088369}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6623689572442746}{11746126089886046125} a^{15} + \frac{26264136515579601}{23492252179772092250} a^{14} - \frac{65045845659391496}{11746126089886046125} a^{13} + \frac{34581756210212438}{2349225217977209225} a^{12} - \frac{511644626198434761}{23492252179772092250} a^{11} + \frac{536056802857900619}{23492252179772092250} a^{10} + \frac{1560502944814546977}{23492252179772092250} a^{9} - \frac{483014656357952156}{2349225217977209225} a^{8} + \frac{3770977466577582553}{11746126089886046125} a^{7} - \frac{3301068180088322331}{23492252179772092250} a^{6} - \frac{11501301745756123}{9891474602009302} a^{5} + \frac{2603374912580958199}{939690087190883690} a^{4} - \frac{2074602117628186387}{469845043595441845} a^{3} + \frac{403042899987829255}{93969008719088369} a^{2} - \frac{330309634242928527}{187938017438176738} a + \frac{100815322642753339}{187938017438176738} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5965.81155927 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:C_4$ (as 16T21):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_2^2:C_4)$ |
| Character table for $C_2 \times (C_2^2:C_4)$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |