Normalized defining polynomial
\( x^{16} - x^{15} + 7 x^{14} - 10 x^{13} + 45 x^{12} - 34 x^{11} + 26 x^{10} + 200 x^{9} - 271 x^{8} + 400 x^{7} + 104 x^{6} - 272 x^{5} + 720 x^{4} - 320 x^{3} + 448 x^{2} - 128 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(343361479062744140625=3^{8}\cdot 5^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{8} - \frac{3}{8} a^{7} - \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{176} a^{12} - \frac{1}{16} a^{11} - \frac{1}{16} a^{10} + \frac{9}{44} a^{9} - \frac{1}{16} a^{8} + \frac{1}{4} a^{7} - \frac{39}{88} a^{6} - \frac{1}{4} a^{5} - \frac{5}{16} a^{4} - \frac{21}{88} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a + \frac{4}{11}$, $\frac{1}{352} a^{13} - \frac{1}{352} a^{12} + \frac{1}{32} a^{11} - \frac{15}{176} a^{10} + \frac{41}{352} a^{9} + \frac{1}{16} a^{8} - \frac{17}{176} a^{7} + \frac{9}{22} a^{6} - \frac{5}{32} a^{5} + \frac{7}{22} a^{4} + \frac{27}{88} a^{3} + \frac{2}{11} a - \frac{2}{11}$, $\frac{1}{704} a^{14} - \frac{1}{704} a^{13} - \frac{1}{704} a^{12} + \frac{7}{352} a^{11} + \frac{85}{704} a^{10} - \frac{73}{352} a^{9} + \frac{49}{352} a^{8} - \frac{15}{88} a^{7} + \frac{177}{704} a^{6} - \frac{15}{44} a^{5} + \frac{1}{11} a^{4} + \frac{1}{11} a^{3} + \frac{1}{11} a^{2} - \frac{1}{11} a - \frac{1}{11}$, $\frac{1}{336512} a^{15} - \frac{141}{336512} a^{14} - \frac{329}{336512} a^{13} - \frac{397}{168256} a^{12} - \frac{4471}{336512} a^{11} - \frac{6351}{168256} a^{10} - \frac{32909}{168256} a^{9} + \frac{5427}{21032} a^{8} - \frac{74823}{336512} a^{7} + \frac{4245}{84128} a^{6} + \frac{18283}{84128} a^{5} + \frac{13863}{42064} a^{4} - \frac{272}{2629} a^{3} - \frac{43}{2629} a^{2} + \frac{2487}{5258} a - \frac{338}{2629}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1519}{21032} a^{15} - \frac{1055}{84128} a^{14} - \frac{35125}{84128} a^{13} + \frac{24985}{84128} a^{12} - \frac{47775}{21032} a^{11} - \frac{28969}{84128} a^{10} + \frac{38515}{42064} a^{9} - \frac{240595}{21032} a^{8} + \frac{61625}{10516} a^{7} - \frac{482935}{84128} a^{6} - \frac{329411}{21032} a^{5} + \frac{427645}{42064} a^{4} - \frac{153885}{10516} a^{3} + \frac{12995}{5258} a^{2} - \frac{39905}{5258} a + \frac{12033}{2629} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3350.16978018 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2:C_4$ (as 16T21):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_2 \times (C_2^2:C_4)$ |
| Character table for $C_2 \times (C_2^2:C_4)$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |