Normalized defining polynomial
\( x^{16} - x^{15} + 3 x^{14} - 8 x^{13} + 8 x^{12} + 7 x^{11} + 6 x^{10} + 56 x^{9} - 137 x^{8} + 168 x^{7} + 54 x^{6} + 189 x^{5} + 648 x^{4} - 1944 x^{3} + 2187 x^{2} - 2187 x + 6561 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(343361479062744140625=3^{8}\cdot 5^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.21$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(165=3\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{165}(1,·)$, $\chi_{165}(67,·)$, $\chi_{165}(133,·)$, $\chi_{165}(76,·)$, $\chi_{165}(34,·)$, $\chi_{165}(142,·)$, $\chi_{165}(131,·)$, $\chi_{165}(23,·)$, $\chi_{165}(89,·)$, $\chi_{165}(32,·)$, $\chi_{165}(98,·)$, $\chi_{165}(164,·)$, $\chi_{165}(43,·)$, $\chi_{165}(109,·)$, $\chi_{165}(56,·)$, $\chi_{165}(122,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{3} a^{9} - \frac{1}{3} a^{8} + \frac{1}{3} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{9} + \frac{1}{3} a^{8} + \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{2}{9} a^{5} - \frac{1}{3} a^{4} + \frac{2}{9} a^{3} - \frac{2}{9} a^{2} - \frac{1}{3} a$, $\frac{1}{27} a^{11} - \frac{1}{27} a^{10} + \frac{1}{9} a^{9} - \frac{8}{27} a^{8} + \frac{8}{27} a^{7} + \frac{7}{27} a^{6} + \frac{2}{9} a^{5} + \frac{2}{27} a^{4} - \frac{2}{27} a^{3} + \frac{2}{9} a^{2}$, $\frac{1}{162} a^{12} + \frac{1}{81} a^{11} + \frac{1}{162} a^{9} - \frac{8}{81} a^{8} - \frac{25}{81} a^{7} + \frac{1}{6} a^{6} + \frac{37}{81} a^{5} - \frac{25}{81} a^{4} - \frac{1}{2} a^{3} + \frac{4}{9} a^{2} - \frac{1}{3} a - \frac{1}{2}$, $\frac{1}{174474} a^{13} - \frac{203}{87237} a^{12} + \frac{248}{29079} a^{11} - \frac{2303}{174474} a^{10} + \frac{3244}{87237} a^{9} - \frac{22825}{87237} a^{8} - \frac{21391}{58158} a^{7} - \frac{3239}{87237} a^{6} - \frac{21655}{87237} a^{5} - \frac{21391}{58158} a^{4} + \frac{320}{1077} a^{3} + \frac{1226}{3231} a^{2} - \frac{7}{2154} a + \frac{65}{359}$, $\frac{1}{523422} a^{14} - \frac{1}{523422} a^{13} - \frac{232}{87237} a^{12} - \frac{7091}{523422} a^{11} + \frac{4301}{523422} a^{10} - \frac{24022}{261711} a^{9} + \frac{30149}{174474} a^{8} - \frac{167929}{523422} a^{7} + \frac{120500}{261711} a^{6} + \frac{35873}{174474} a^{5} - \frac{12179}{58158} a^{4} + \frac{1229}{9693} a^{3} - \frac{1421}{6462} a^{2} - \frac{815}{2154} a + \frac{159}{359}$, $\frac{1}{1570266} a^{15} - \frac{1}{1570266} a^{14} + \frac{1}{523422} a^{13} - \frac{787}{785133} a^{12} + \frac{25145}{1570266} a^{11} - \frac{62039}{1570266} a^{10} + \frac{19504}{261711} a^{9} - \frac{302371}{1570266} a^{8} - \frac{46577}{1570266} a^{7} + \frac{57835}{261711} a^{6} - \frac{9383}{19386} a^{5} - \frac{4885}{19386} a^{4} - \frac{362}{3231} a^{3} + \frac{255}{718} a^{2} + \frac{223}{718} a - \frac{313}{718}$
Class group and class number
$C_{4}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1085}{1570266} a^{15} + \frac{1085}{785133} a^{14} - \frac{35}{19386} a^{13} + \frac{1085}{1570266} a^{12} - \frac{8680}{785133} a^{11} + \frac{33635}{1570266} a^{10} + \frac{1085}{58158} a^{9} - \frac{18013}{785133} a^{8} + \frac{33635}{1570266} a^{7} - \frac{1085}{6462} a^{6} + \frac{33635}{87237} a^{5} + \frac{14105}{58158} a^{4} - \frac{8855}{19386} a^{3} - \frac{5425}{2154} a + \frac{1085}{359} \) (order $30$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 16078.6045103 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |