Normalized defining polynomial
\( x^{16} - 5 x^{15} + 31 x^{14} - 79 x^{13} + 191 x^{12} - 166 x^{11} + 3 x^{10} + 442 x^{9} - 845 x^{8} + 945 x^{7} - 901 x^{6} + 110 x^{5} + 850 x^{4} - 1692 x^{3} + 1815 x^{2} - 1050 x + 625 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3370872826949590878489277=11^{10}\cdot 37^{9}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.12$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $11, 37$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{11} a^{12} + \frac{5}{11} a^{11} + \frac{5}{11} a^{9} - \frac{1}{11} a^{8} - \frac{2}{11} a^{7} + \frac{1}{11} a^{6} + \frac{2}{11} a^{4} - \frac{3}{11} a^{3} + \frac{4}{11} a^{2} - \frac{4}{11} a + \frac{3}{11}$, $\frac{1}{55} a^{13} + \frac{1}{55} a^{12} + \frac{2}{55} a^{11} - \frac{17}{55} a^{10} - \frac{21}{55} a^{9} + \frac{13}{55} a^{8} - \frac{24}{55} a^{7} + \frac{18}{55} a^{6} + \frac{13}{55} a^{5} - \frac{2}{5} a^{4} + \frac{27}{55} a^{3} + \frac{2}{55} a^{2} - \frac{3}{55} a + \frac{2}{11}$, $\frac{1}{2035} a^{14} + \frac{16}{2035} a^{13} + \frac{7}{2035} a^{12} - \frac{697}{2035} a^{11} + \frac{54}{2035} a^{10} + \frac{43}{185} a^{9} - \frac{809}{2035} a^{8} + \frac{393}{2035} a^{7} - \frac{497}{2035} a^{6} + \frac{173}{2035} a^{5} + \frac{722}{2035} a^{4} - \frac{388}{2035} a^{3} - \frac{1003}{2035} a^{2} + \frac{1}{407} a - \frac{31}{407}$, $\frac{1}{4880218843648854475} a^{15} + \frac{209034378665747}{976043768729770895} a^{14} + \frac{3017582537638071}{4880218843648854475} a^{13} + \frac{20743668545324}{7519597601924275} a^{12} - \frac{319041416635994152}{697174120521264925} a^{11} - \frac{1460823654891420531}{4880218843648854475} a^{10} - \frac{704138904994927}{1573756479731975} a^{9} + \frac{1906783385794953807}{4880218843648854475} a^{8} - \frac{71031108286782860}{195208753745954179} a^{7} - \frac{36403121050624462}{88731251702706445} a^{6} + \frac{1069131233039671519}{4880218843648854475} a^{5} + \frac{13605996424584733}{88731251702706445} a^{4} - \frac{213403551342112114}{976043768729770895} a^{3} - \frac{1040411891307385187}{4880218843648854475} a^{2} - \frac{480801589326193147}{976043768729770895} a - \frac{55711036371519167}{195208753745954179}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 326494.750386 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^3\times C_4).D_4$ (as 16T675):
| A solvable group of order 256 |
| The 31 conjugacy class representatives for $(C_2^3\times C_4).D_4$ |
| Character table for $(C_2^3\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-11}) \), 4.0.4477.1, 8.0.741610573.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{6}$ | $16$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{6}$ | R | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $11$ | 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.1 | $x^{4} + 33$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 37 | Data not computed | ||||||