Normalized defining polynomial
\( x^{16} - 8 x^{15} + 30 x^{14} - 70 x^{13} - 245 x^{12} + 2016 x^{11} - 3898 x^{10} + 295 x^{9} + 87100 x^{8} - 326850 x^{7} + 1209077 x^{6} - 2505376 x^{5} + 5675872 x^{4} - 7546349 x^{3} + 18066458 x^{2} - 14658053 x + 6958823 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33662328752972862921089838254641=31^{6}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{41} a^{8} - \frac{4}{41} a^{7} + \frac{7}{41} a^{6} - \frac{7}{41} a^{5} - \frac{11}{41} a^{4} - \frac{12}{41} a^{3} + \frac{3}{41} a^{2} - \frac{18}{41} a - \frac{4}{41}$, $\frac{1}{41} a^{9} - \frac{9}{41} a^{7} - \frac{20}{41} a^{6} + \frac{2}{41} a^{5} - \frac{15}{41} a^{4} - \frac{4}{41} a^{3} - \frac{6}{41} a^{2} + \frac{6}{41} a - \frac{16}{41}$, $\frac{1}{41} a^{10} - \frac{15}{41} a^{7} - \frac{17}{41} a^{6} + \frac{4}{41} a^{5} + \frac{20}{41} a^{4} + \frac{9}{41} a^{3} - \frac{8}{41} a^{2} - \frac{14}{41} a + \frac{5}{41}$, $\frac{1}{41} a^{11} + \frac{5}{41} a^{7} - \frac{14}{41} a^{6} - \frac{3}{41} a^{5} + \frac{8}{41} a^{4} + \frac{17}{41} a^{3} - \frac{10}{41} a^{2} - \frac{19}{41} a - \frac{19}{41}$, $\frac{1}{82} a^{12} - \frac{1}{82} a^{9} - \frac{13}{41} a^{7} + \frac{23}{82} a^{6} - \frac{18}{41} a^{4} + \frac{13}{82} a^{3} - \frac{14}{41} a^{2} + \frac{12}{41} a - \frac{5}{82}$, $\frac{1}{410} a^{13} + \frac{1}{410} a^{12} + \frac{1}{205} a^{11} + \frac{3}{410} a^{10} - \frac{1}{82} a^{9} + \frac{2}{205} a^{8} + \frac{109}{410} a^{7} + \frac{53}{410} a^{6} + \frac{1}{205} a^{5} - \frac{23}{82} a^{4} + \frac{39}{410} a^{3} - \frac{53}{205} a^{2} - \frac{13}{82} a - \frac{79}{410}$, $\frac{1}{297694925010648391550} a^{14} - \frac{7}{297694925010648391550} a^{13} - \frac{1625744571590559371}{297694925010648391550} a^{12} + \frac{2493615600015346767}{297694925010648391550} a^{11} + \frac{2723690445998672071}{297694925010648391550} a^{10} - \frac{1382478054081993061}{297694925010648391550} a^{9} + \frac{3242137695577650667}{297694925010648391550} a^{8} + \frac{59060348289990218171}{297694925010648391550} a^{7} - \frac{47548243757383476877}{297694925010648391550} a^{6} - \frac{124893904122334954851}{297694925010648391550} a^{5} + \frac{23384917781792047789}{297694925010648391550} a^{4} - \frac{83598505356646623993}{297694925010648391550} a^{3} + \frac{14471531934553915163}{297694925010648391550} a^{2} - \frac{144022290896538634019}{297694925010648391550} a - \frac{6246155498568226883}{297694925010648391550}$, $\frac{1}{695117649899863994269250} a^{15} + \frac{116}{69511764989986399426925} a^{14} + \frac{109313713711554830697}{139023529979972798853850} a^{13} - \frac{121223022747053454149}{69511764989986399426925} a^{12} + \frac{820593407938982731111}{69511764989986399426925} a^{11} + \frac{4662008471564846266771}{695117649899863994269250} a^{10} - \frac{537123099911361719842}{69511764989986399426925} a^{9} + \frac{817736358125733024791}{69511764989986399426925} a^{8} - \frac{67166622297897151834799}{139023529979972798853850} a^{7} + \frac{24672817581255746519169}{69511764989986399426925} a^{6} - \frac{119910590025918288010889}{347558824949931997134625} a^{5} + \frac{69476950649355309253469}{139023529979972798853850} a^{4} - \frac{146554383697889732752184}{347558824949931997134625} a^{3} + \frac{21906355548604149981801}{347558824949931997134625} a^{2} + \frac{104437661660000864308319}{695117649899863994269250} a - \frac{32128637575644441443011}{695117649899863994269250}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 294383359.09 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T257):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.68921.1, 8.4.187158857199641.1, 8.2.6037382490311.1, 8.2.141510355443631.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 31 | Data not computed | ||||||
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ | |