Normalized defining polynomial
\( x^{16} + 4 x^{14} + 4 x^{12} - 24 x^{11} - 20 x^{10} + 72 x^{9} + 214 x^{8} + 288 x^{7} + 316 x^{6} + 432 x^{5} + 556 x^{4} + 504 x^{3} + 340 x^{2} + 168 x + 49 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(336571521970697404416=2^{46}\cdot 3^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.18$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{3} + \frac{1}{4} a^{2} + \frac{1}{4} a + \frac{1}{4}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{308} a^{13} + \frac{37}{308} a^{12} + \frac{19}{154} a^{11} + \frac{19}{154} a^{10} - \frac{47}{308} a^{9} - \frac{1}{44} a^{8} + \frac{17}{77} a^{7} - \frac{4}{77} a^{6} + \frac{3}{308} a^{5} + \frac{3}{308} a^{4} + \frac{73}{154} a^{3} - \frac{41}{154} a^{2} + \frac{131}{308} a - \frac{7}{44}$, $\frac{1}{308} a^{14} - \frac{1}{14} a^{12} + \frac{9}{154} a^{11} - \frac{67}{308} a^{10} + \frac{19}{154} a^{9} - \frac{29}{154} a^{8} - \frac{17}{77} a^{7} - \frac{3}{44} a^{6} - \frac{27}{77} a^{5} - \frac{3}{22} a^{4} - \frac{47}{154} a^{3} - \frac{69}{308} a^{2} - \frac{61}{154} a + \frac{3}{22}$, $\frac{1}{314270959156} a^{15} + \frac{1984369}{22447925654} a^{14} - \frac{171553441}{314270959156} a^{13} - \frac{1663026313}{22447925654} a^{12} + \frac{16600823579}{314270959156} a^{11} + \frac{5319323045}{78567739789} a^{10} - \frac{13233688649}{314270959156} a^{9} + \frac{12991436273}{78567739789} a^{8} + \frac{9225276547}{314270959156} a^{7} + \frac{7796059784}{78567739789} a^{6} - \frac{4335985751}{314270959156} a^{5} - \frac{1198030000}{2534443219} a^{4} - \frac{140156018251}{314270959156} a^{3} - \frac{2549856195}{22447925654} a^{2} + \frac{123250056101}{314270959156} a + \frac{1960689191}{22447925654}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7938.46011493 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_8:C_2^2$ (as 16T38):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_8:C_2^2$ |
| Character table for $C_8:C_2^2$ |
Intermediate fields
| \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-2}) \), 4.2.1728.1, 4.2.6912.1, \(\Q(\sqrt{-2}, \sqrt{3})\), 8.2.2293235712.2, 8.2.2293235712.1, 8.0.191102976.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| 3.8.7.2 | $x^{8} - 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |