Normalized defining polynomial
\( x^{16} - 6 x^{15} + 20 x^{14} - 45 x^{13} + 76 x^{12} - 98 x^{11} + 94 x^{10} - 58 x^{9} + 8 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(3347302586328125\)
\(\medspace = 5^{8}\cdot 61^{2}\cdot 101\cdot 151^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.34\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{1/2}61^{1/2}101^{1/2}151^{1/2}\approx 2156.7463921379353$ | ||
Ramified primes: |
\(5\), \(61\), \(101\), \(151\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q(\sqrt{101}) \) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{15}-3a^{14}+5a^{13}-3a^{12}-4a^{11}+17a^{10}-29a^{9}+30a^{8}-17a^{7}+4a^{6}+2a^{5}-5a^{4}+7a^{3}-2a^{2}-a$, $a^{15}-5a^{14}+13a^{13}-22a^{12}+26a^{11}-19a^{10}-a^{9}+22a^{8}-28a^{7}+17a^{6}-6a^{5}-a^{4}+6a^{3}-7a^{2}+a+1$, $a^{14}-4a^{13}+10a^{12}-17a^{11}+23a^{10}-23a^{9}+16a^{8}-7a^{7}+2a^{6}-2a^{4}+a^{3}+a^{2}+a-1$, $3a^{15}-17a^{14}+52a^{13}-108a^{12}+168a^{11}-198a^{10}+166a^{9}-77a^{8}-16a^{7}+63a^{6}-63a^{5}+42a^{4}-14a^{3}-8a^{2}+11a-4$, $a^{14}-4a^{13}+10a^{12}-17a^{11}+23a^{10}-23a^{9}+16a^{8}-7a^{7}+2a^{6}-2a^{4}+a^{3}+a^{2}-1$, $a^{15}-5a^{14}+13a^{13}-22a^{12}+26a^{11}-18a^{10}-3a^{9}+26a^{8}-32a^{7}+21a^{6}-6a^{5}-2a^{4}+7a^{3}-6a^{2}+a+1$, $a^{15}-3a^{14}+6a^{13}-7a^{12}+6a^{11}-6a^{9}+7a^{8}-a^{7}-3a^{6}+4a^{5}-4a^{4}+4a^{3}+a^{2}-a+1$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7.65571718077 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 7.65571718077 \cdot 1}{2\cdot\sqrt{3347302586328125}}\cr\approx \mathstrut & 0.160711644811 \end{aligned}\]
Galois group
$C_2^6.S_4^2:D_4$ (as 16T1905):
A solvable group of order 294912 |
The 230 conjugacy class representatives for $C_2^6.S_4^2:D_4$ |
Character table for $C_2^6.S_4^2:D_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), 8.2.5756875.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | $16$ | $16$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.3.0.1}{3} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ | ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.3.0.1}{3} }^{4}{,}\,{\href{/padicField/19.2.0.1}{2} }^{2}$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{4}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.2.0.1}{2} }$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.12.0.1}{12} }{,}\,{\href{/padicField/47.4.0.1}{4} }$ | ${\href{/padicField/53.8.0.1}{8} }{,}\,{\href{/padicField/53.4.0.1}{4} }^{2}$ | ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.3.0.1}{3} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
5.8.4.1 | $x^{8} + 80 x^{7} + 2428 x^{6} + 33688 x^{5} + 195810 x^{4} + 305952 x^{3} + 870132 x^{2} + 1037416 x + 503089$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
\(61\)
| $\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{61}$ | $x + 59$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
61.2.0.1 | $x^{2} + 60 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
61.4.0.1 | $x^{4} + 3 x^{2} + 40 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
61.4.2.1 | $x^{4} + 4878 x^{3} + 6091587 x^{2} + 348450174 x + 20534983$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
61.4.0.1 | $x^{4} + 3 x^{2} + 40 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
\(101\)
| $\Q_{101}$ | $x + 99$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{101}$ | $x + 99$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
101.2.1.1 | $x^{2} + 101$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
101.2.0.1 | $x^{2} + 97 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
\(151\)
| 151.2.1.2 | $x^{2} + 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.0.1 | $x^{2} + 149 x + 6$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
151.2.1.2 | $x^{2} + 151$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
151.4.0.1 | $x^{4} + 13 x^{2} + 89 x + 6$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |