Normalized defining polynomial
\( x^{16} - 17 x^{14} + 170 x^{12} - 2057 x^{10} + 11322 x^{8} - 20893 x^{6} + 345253 x^{4} - 2310028 x^{2} + 4250000 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(33456573905268530473918973952593=17^{15}\cdot 43^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $93.39$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 43$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{3}{8} a^{2} + \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{8} a^{7} + \frac{1}{8} a^{5} + \frac{1}{8} a^{3}$, $\frac{1}{24} a^{8} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a - \frac{1}{6}$, $\frac{1}{240} a^{9} - \frac{1}{48} a^{8} + \frac{1}{40} a^{7} - \frac{1}{16} a^{6} + \frac{7}{40} a^{5} - \frac{1}{16} a^{4} - \frac{13}{80} a^{3} - \frac{3}{8} a^{2} + \frac{29}{60} a + \frac{1}{3}$, $\frac{1}{240} a^{10} + \frac{1}{240} a^{8} - \frac{1}{16} a^{7} - \frac{1}{80} a^{6} - \frac{1}{16} a^{5} + \frac{3}{20} a^{4} - \frac{1}{16} a^{3} + \frac{29}{60} a^{2} - \frac{1}{6}$, $\frac{1}{240} a^{11} - \frac{3}{80} a^{7} + \frac{9}{40} a^{5} - \frac{5}{48} a^{3} - \frac{1}{2} a^{2} + \frac{1}{10} a - \frac{1}{2}$, $\frac{1}{960} a^{12} - \frac{1}{480} a^{10} + \frac{19}{960} a^{8} + \frac{1}{32} a^{6} - \frac{1}{4} a^{5} + \frac{113}{960} a^{4} - \frac{1}{4} a^{3} - \frac{97}{240} a^{2} + \frac{1}{4} a - \frac{5}{12}$, $\frac{1}{24000} a^{13} + \frac{23}{12000} a^{11} + \frac{43}{24000} a^{9} + \frac{117}{4000} a^{7} - \frac{4927}{24000} a^{5} - \frac{511}{6000} a^{3} - \frac{709}{1500} a$, $\frac{1}{7989661008000} a^{14} - \frac{1}{48000} a^{13} + \frac{591818453}{1141380144000} a^{12} - \frac{23}{24000} a^{11} - \frac{1622232407}{7989661008000} a^{10} - \frac{43}{48000} a^{9} - \frac{21385863589}{1141380144000} a^{8} + \frac{383}{8000} a^{7} + \frac{322177415423}{7989661008000} a^{6} - \frac{4073}{48000} a^{5} + \frac{1883490149881}{7989661008000} a^{4} - \frac{1739}{12000} a^{3} + \frac{798204104489}{1997415252000} a^{2} - \frac{41}{3000} a - \frac{422538955}{3994830504}$, $\frac{1}{7989661008000} a^{15} - \frac{662593}{285345036000} a^{13} - \frac{1}{1920} a^{12} + \frac{6700331143}{7989661008000} a^{11} + \frac{1}{960} a^{10} + \frac{76185367}{142672518000} a^{9} - \frac{19}{1920} a^{8} - \frac{401885613427}{7989661008000} a^{7} + \frac{3}{64} a^{6} - \frac{391945733947}{3994830504000} a^{5} + \frac{7}{1920} a^{4} + \frac{213925013257}{998707626000} a^{3} + \frac{7}{480} a^{2} + \frac{4852672733}{9987076260} a + \frac{11}{24}$
Class group and class number
$C_{48}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2165185142.81 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-731}) \), 4.0.9084137.1, 8.0.1402866265591073.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | $16$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | $16$ | R | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $43$ | 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 43.4.2.1 | $x^{4} + 215 x^{2} + 16641$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |