Normalized defining polynomial
\( x^{16} - 5 x^{15} + 12 x^{14} - 19 x^{13} + 21 x^{12} - 16 x^{11} + 6 x^{10} + 12 x^{9} - 28 x^{8} + 21 x^{7} + x^{6} - 20 x^{5} + 28 x^{4} - 20 x^{3} + 10 x^{2} - 4 x + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
| |
Discriminant: | \(3345005787800625\)\(\medspace = 3^{8}\cdot 5^{4}\cdot 13^{8}\) | sage: K.disc()
gp: K.disc
magma: Discriminant(Integers(K));
| |
Root discriminant: | $9.34$ | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
| |
Ramified primes: | $3, 5, 13$ | sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(Integers(K)));
| |
$|\Aut(K/\Q)|$: | $8$ | ||
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{4201259} a^{15} - \frac{844160}{4201259} a^{14} + \frac{1138268}{4201259} a^{13} - \frac{476410}{4201259} a^{12} - \frac{1634204}{4201259} a^{11} + \frac{273623}{4201259} a^{10} + \frac{795002}{4201259} a^{9} - \frac{1897}{4201259} a^{8} + \frac{682328}{4201259} a^{7} + \frac{2016081}{4201259} a^{6} - \frac{1049503}{4201259} a^{5} - \frac{1487939}{4201259} a^{4} + \frac{743343}{4201259} a^{3} - \frac{867204}{4201259} a^{2} + \frac{2016916}{4201259} a - \frac{107421}{4201259}$
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
| |
Torsion generator: | \( \frac{8947}{8033} a^{15} - \frac{40788}{8033} a^{14} + \frac{87386}{8033} a^{13} - \frac{122437}{8033} a^{12} + \frac{114059}{8033} a^{11} - \frac{64231}{8033} a^{10} - \frac{1220}{8033} a^{9} + \frac{121765}{8033} a^{8} - \frac{194988}{8033} a^{7} + \frac{72428}{8033} a^{6} + \frac{87250}{8033} a^{5} - \frac{166072}{8033} a^{4} + \frac{161088}{8033} a^{3} - \frac{64577}{8033} a^{2} + \frac{24285}{8033} a - \frac{3468}{8033} \) (order $6$) | sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
| |
Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | sage: UK.fundamental_units()
gp: K.fu
magma: [K!f(g): g in Generators(UK)];
| |
Regulator: | \( 22.9306095521 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
|
Class number formula
Galois group
A solvable group of order 32 |
The 14 conjugacy class representatives for $D_8:C_2$ |
Character table for $D_8:C_2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{-39}) \), 4.0.117.1 x2, 4.2.507.1 x2, \(\Q(\sqrt{-3}, \sqrt{13})\), 8.0.2313441.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
$3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
$5$ | 5.8.0.1 | $x^{8} + x^{2} - 2 x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
5.8.4.2 | $x^{8} + 25 x^{4} - 250 x^{2} + 1250$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |
$13$ | 13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
13.8.4.1 | $x^{8} + 26 x^{6} + 845 x^{4} + 6591 x^{2} + 114244$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |