Properties

Label 16.0.33426020576...5616.2
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 13^{4}\cdot 17^{8}$
Root discriminant $22.14$
Ramified primes $2, 13, 17$
Class number $2$
Class group $[2]$
Galois group $C_2\wr C_2^2$ (as 16T150)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![64, -192, 336, -544, 1032, -960, 216, 376, -250, -92, 159, -36, -32, 18, 2, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 2*x^14 + 18*x^13 - 32*x^12 - 36*x^11 + 159*x^10 - 92*x^9 - 250*x^8 + 376*x^7 + 216*x^6 - 960*x^5 + 1032*x^4 - 544*x^3 + 336*x^2 - 192*x + 64)
 
gp: K = bnfinit(x^16 - 4*x^15 + 2*x^14 + 18*x^13 - 32*x^12 - 36*x^11 + 159*x^10 - 92*x^9 - 250*x^8 + 376*x^7 + 216*x^6 - 960*x^5 + 1032*x^4 - 544*x^3 + 336*x^2 - 192*x + 64, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 2 x^{14} + 18 x^{13} - 32 x^{12} - 36 x^{11} + 159 x^{10} - 92 x^{9} - 250 x^{8} + 376 x^{7} + 216 x^{6} - 960 x^{5} + 1032 x^{4} - 544 x^{3} + 336 x^{2} - 192 x + 64 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3342602057661458415616=2^{24}\cdot 13^{4}\cdot 17^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $22.14$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 13, 17$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{7} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{8} a^{12} - \frac{1}{4} a^{9} - \frac{1}{8} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{16} a^{13} - \frac{1}{8} a^{10} + \frac{7}{16} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{576} a^{14} - \frac{1}{48} a^{13} - \frac{1}{48} a^{12} - \frac{1}{96} a^{11} + \frac{5}{72} a^{10} + \frac{1}{36} a^{9} - \frac{49}{576} a^{8} - \frac{5}{144} a^{7} + \frac{29}{144} a^{6} + \frac{13}{36} a^{5} - \frac{5}{12} a^{4} + \frac{4}{9} a^{3} - \frac{31}{72} a^{2} - \frac{7}{18} a + \frac{1}{18}$, $\frac{1}{139785342336} a^{15} + \frac{13192399}{69892671168} a^{14} + \frac{100314793}{3882926176} a^{13} - \frac{478450349}{23297557056} a^{12} - \frac{2960148737}{34946335584} a^{11} - \frac{45554615}{970731544} a^{10} - \frac{32964653489}{139785342336} a^{9} - \frac{8827932287}{69892671168} a^{8} - \frac{3580390391}{34946335584} a^{7} - \frac{5974363859}{17473167792} a^{6} - \frac{23040299}{4368291948} a^{5} + \frac{390817670}{1092072987} a^{4} + \frac{1569003595}{5824389264} a^{3} - \frac{295889483}{2912194632} a^{2} - \frac{819380221}{4368291948} a - \frac{781983083}{2184145974}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 109921.332201 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_2^2$ (as 16T150):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 16 conjugacy class representatives for $C_2\wr C_2^2$
Character table for $C_2\wr C_2^2$

Intermediate fields

\(\Q(\sqrt{34}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{2}) \), 4.0.1088.2 x2, \(\Q(\sqrt{2}, \sqrt{17})\), 4.0.2312.1 x2, 8.0.57815240704.3, 8.0.200052736.3, 8.0.342102016.2

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ R R ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.2.3.1$x^{2} + 14$$2$$1$$3$$C_2$$[3]$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
2.4.6.1$x^{4} - 6 x^{2} + 4$$2$$2$$6$$C_2^2$$[3]^{2}$
$13$13.4.2.2$x^{4} - 13 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
13.4.2.2$x^{4} - 13 x^{2} + 338$$2$$2$$2$$C_4$$[\ ]_{2}^{2}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
13.4.0.1$x^{4} + x^{2} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
$17$17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
17.4.2.1$x^{4} + 85 x^{2} + 2601$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$