Properties

Label 16.0.332115825597087744.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{24}\cdot 3^{12}\cdot 193^{2}$
Root discriminant $12.45$
Ramified primes $2, 3, 193$
Class number $1$
Class group Trivial
Galois group 16T1445

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![4, -8, 20, -36, 66, -100, 142, -158, 169, -138, 114, -68, 45, -18, 10, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 + 10*x^14 - 18*x^13 + 45*x^12 - 68*x^11 + 114*x^10 - 138*x^9 + 169*x^8 - 158*x^7 + 142*x^6 - 100*x^5 + 66*x^4 - 36*x^3 + 20*x^2 - 8*x + 4)
 
gp: K = bnfinit(x^16 - 2*x^15 + 10*x^14 - 18*x^13 + 45*x^12 - 68*x^11 + 114*x^10 - 138*x^9 + 169*x^8 - 158*x^7 + 142*x^6 - 100*x^5 + 66*x^4 - 36*x^3 + 20*x^2 - 8*x + 4, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} + 10 x^{14} - 18 x^{13} + 45 x^{12} - 68 x^{11} + 114 x^{10} - 138 x^{9} + 169 x^{8} - 158 x^{7} + 142 x^{6} - 100 x^{5} + 66 x^{4} - 36 x^{3} + 20 x^{2} - 8 x + 4 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(332115825597087744=2^{24}\cdot 3^{12}\cdot 193^{2}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $12.45$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 193$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{14} - \frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{454} a^{15} + \frac{20}{227} a^{14} + \frac{101}{454} a^{13} - \frac{89}{454} a^{12} - \frac{61}{454} a^{11} + \frac{47}{227} a^{10} + \frac{203}{454} a^{9} - \frac{11}{454} a^{8} + \frac{161}{454} a^{7} - \frac{103}{227} a^{6} - \frac{111}{454} a^{5} + \frac{5}{454} a^{4} - \frac{89}{227} a^{3} + \frac{103}{227} a^{2} + \frac{23}{227} a + \frac{54}{227}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{329}{454} a^{15} - \frac{687}{454} a^{14} + \frac{1519}{227} a^{13} - \frac{5673}{454} a^{12} + \frac{12619}{454} a^{11} - \frac{19241}{454} a^{10} + \frac{14439}{227} a^{9} - \frac{34037}{454} a^{8} + \frac{36625}{454} a^{7} - \frac{32135}{454} a^{6} + \frac{11818}{227} a^{5} - \frac{15153}{454} a^{4} + \frac{3861}{227} a^{3} - \frac{1979}{227} a^{2} + \frac{984}{227} a - \frac{167}{227} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 513.034037264 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

16T1445:

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 2048
The 74 conjugacy class representatives for t16n1445 are not computed
Character table for t16n1445 is not computed

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.432.1, 8.0.36018432.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/7.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.12.24$x^{8} + 4 x^{6} + 28 x^{4} + 80$$4$$2$$12$$(((C_4 \times C_2): C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
2.8.12.22$x^{8} + 4 x^{7} + 16 x^{3} + 48$$4$$2$$12$$(((C_4 \times C_2): C_2):C_2):C_2$$[2, 2, 2, 2]^{4}$
3Data not computed
$193$193.2.1.2$x^{2} + 965$$2$$1$$1$$C_2$$[\ ]_{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.1.2$x^{2} + 965$$2$$1$$1$$C_2$$[\ ]_{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$
193.2.0.1$x^{2} - x + 5$$1$$2$$0$$C_2$$[\ ]^{2}$