Normalized defining polynomial
\( x^{16} + 2 x^{14} - 2 x^{13} + 67 x^{12} - 108 x^{11} + 574 x^{10} - 596 x^{9} + 2115 x^{8} - 1864 x^{7} + 3302 x^{6} - 2816 x^{5} + 2647 x^{4} - 1528 x^{3} + 522 x^{2} - 36 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(330123790096000000000000=2^{16}\cdot 5^{12}\cdot 379^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $29.51$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 379$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{5526818992596850338294511} a^{15} - \frac{991482017346103498067055}{5526818992596850338294511} a^{14} - \frac{192253410679301022218208}{5526818992596850338294511} a^{13} + \frac{1078198032254338031999520}{5526818992596850338294511} a^{12} + \frac{1730504791673212370532366}{5526818992596850338294511} a^{11} - \frac{1400640725639071787582923}{5526818992596850338294511} a^{10} + \frac{1683728916043139588753049}{5526818992596850338294511} a^{9} - \frac{2098846801694920006439476}{5526818992596850338294511} a^{8} + \frac{526103784371437872142754}{5526818992596850338294511} a^{7} + \frac{2758330551582066002883473}{5526818992596850338294511} a^{6} + \frac{1771077867086720833123270}{5526818992596850338294511} a^{5} + \frac{474830132466011180065685}{5526818992596850338294511} a^{4} - \frac{426617524364146274646820}{5526818992596850338294511} a^{3} - \frac{1659702280149787851528910}{5526818992596850338294511} a^{2} + \frac{1773020637096734505825150}{5526818992596850338294511} a + \frac{1419742656997146955390907}{5526818992596850338294511}$
Class group and class number
$C_{2}\times C_{6}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{487117772461740147696672}{5526818992596850338294511} a^{15} + \frac{36989459303499272414620}{5526818992596850338294511} a^{14} + \frac{991314671835712072925488}{5526818992596850338294511} a^{13} - \frac{899470483607681152520812}{5526818992596850338294511} a^{12} + \frac{32594708677119519447549464}{5526818992596850338294511} a^{11} - \frac{50160316571009415115828356}{5526818992596850338294511} a^{10} + \frac{276749433928909252329928712}{5526818992596850338294511} a^{9} - \frac{270878940855293624216859283}{5526818992596850338294511} a^{8} + \frac{1017762477727980997204005208}{5526818992596850338294511} a^{7} - \frac{839037095707248330545342404}{5526818992596850338294511} a^{6} + \frac{1573599753974152855129762364}{5526818992596850338294511} a^{5} - \frac{1277284571534527192870021036}{5526818992596850338294511} a^{4} + \frac{1234521239549055010614719568}{5526818992596850338294511} a^{3} - \frac{684166335784901315196135828}{5526818992596850338294511} a^{2} + \frac{231027435030507418859984900}{5526818992596850338294511} a - \frac{10382479762788039874713384}{5526818992596850338294511} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 46652.615418 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 28 conjugacy class representatives for t16n1027 |
| Character table for t16n1027 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.8.22982560000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 379 | Data not computed | ||||||