Normalized defining polynomial
\( x^{16} - 3 x^{15} + 607 x^{14} - 12027 x^{13} + 323884 x^{12} + 4998536 x^{11} + 141652975 x^{10} + 1065246568 x^{9} - 16715660403 x^{8} + 245536064601 x^{7} + 24334833783094 x^{6} + 32537334329978 x^{5} + 301979753790703 x^{4} - 20341549562763644 x^{3} + 11150815222856179 x^{2} + 792523107994436141 x + 7082452187739053435 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(330056782202198660511172839698929216685213271046904401=61^{14}\cdot 109^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $2212.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $61, 109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{5} a^{9} + \frac{2}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{1}{5} a^{2} + \frac{2}{5} a$, $\frac{1}{5} a^{10} + \frac{2}{5} a^{8} + \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a$, $\frac{1}{5} a^{11} - \frac{2}{5} a^{8} + \frac{2}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{5} a^{12} + \frac{1}{5} a^{8} - \frac{2}{5} a^{7} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} + \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{25} a^{13} - \frac{2}{25} a^{12} - \frac{2}{25} a^{11} + \frac{2}{25} a^{10} + \frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{11}{25} a^{7} + \frac{3}{25} a^{6} - \frac{9}{25} a^{5} + \frac{3}{25} a^{4} + \frac{6}{25} a^{3} - \frac{8}{25} a - \frac{1}{5}$, $\frac{1}{5975} a^{14} + \frac{108}{5975} a^{13} - \frac{552}{5975} a^{12} + \frac{97}{5975} a^{11} - \frac{279}{5975} a^{10} - \frac{481}{5975} a^{9} - \frac{2339}{5975} a^{8} - \frac{162}{5975} a^{7} - \frac{84}{5975} a^{6} - \frac{962}{5975} a^{5} + \frac{406}{5975} a^{4} - \frac{66}{1195} a^{3} + \frac{1047}{5975} a^{2} - \frac{284}{1195} a + \frac{118}{239}$, $\frac{1}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{15} - \frac{106068440284932338764233607372122566534775181544176681308746003257111698645216580079154510367845907261527540966351503872}{1546047373824974449669336218953193330318421469040514788665202653990049072256391405756843812920792278439049543765012311283603} a^{14} - \frac{418162055098598870833831759389453117357550371659421951718123634400343144525393828445497776989024977386953865418223561409336}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{13} + \frac{1485671594167294906499194912222319948177502488829915271278451671336807441262510976569015200350015183987926722407204347484543}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{12} - \frac{398035197339273011702336632459125823389808501840920477368853204973831947363412801797682394359114191652811195733888017779918}{7730236869124872248346681094765966651592107345202573943326013269950245361281957028784219064603961392195247718825061556418015} a^{11} + \frac{2518647072501098233373351902536455669464400324526714770996896773281400114024349114972158771394309113033842022787829885783781}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{10} - \frac{3826693837451900995069167091505989891585262109354653916187530787654056492399072155408845842708991073390942456177954503753066}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{9} + \frac{22441240663239937552758943902013557903806146365047316496065079336175733395453467810263893784281946920177312604218954806024}{56425086635947972615669205071284428113811002519726817104569439926644126724685817728351963975211397023322976049817967565095} a^{8} + \frac{18362831421536740104569154631995069771896754198511316487346644941921216474420682776713604046250402960618973245931689700551422}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{7} - \frac{1400375852847678798355578549103773453697500323617869103283956088697900153424067647862123418836134769317379868269863981050002}{7730236869124872248346681094765966651592107345202573943326013269950245361281957028784219064603961392195247718825061556418015} a^{6} + \frac{9712388904187096968279394844743621064807383674400249964894582890366660802401347724002401244389379891246746676040684293690217}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{5} - \frac{17471858841014909042814692894798480998065053418678578960842784211832525276005355231837704289570253939895783434359934825141873}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{4} + \frac{5285346668188873686468210403390741201873342707083765641310786006196996608566058604642131129005018492005323876005176719184787}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{3} + \frac{17068493030899109286325036789780345285792851789534670567277539873804019792752324484585645848757331455668460730806644110011894}{38651184345624361241733405473829833257960536726012869716630066349751226806409785143921095323019806960976238594125307782090075} a^{2} - \frac{1591261648543106584254109006709543329163336973453489990274526912221023112510925882309968282912991984575739845668531205237182}{7730236869124872248346681094765966651592107345202573943326013269950245361281957028784219064603961392195247718825061556418015} a + \frac{366716796871402702267230051102034688992434553363010078058914672866234432000347820302341767673518289954073152217465393646336}{1546047373824974449669336218953193330318421469040514788665202653990049072256391405756843812920792278439049543765012311283603}$
Class group and class number
$C_{2}\times C_{2}\times C_{552275524}$, which has order $2209102096$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 185489178554 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_8.C_4$ |
| Character table for $C_8.C_4$ |
Intermediate fields
| \(\Q(\sqrt{109}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{6649}) \), \(\Q(\sqrt{61}, \sqrt{109})\), 8.8.86404825551402914547601.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $61$ | 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 61.8.7.2 | $x^{8} - 244$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $109$ | 109.8.7.2 | $x^{8} - 3924$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 109.8.7.2 | $x^{8} - 3924$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |