Normalized defining polynomial
\( x^{16} - 5 x^{15} - 28 x^{14} + 29 x^{13} + 824 x^{12} + 2465 x^{11} - 10425 x^{10} - 72966 x^{9} - 45536 x^{8} + 794904 x^{7} + 3196416 x^{6} - 2423392 x^{5} - 26235328 x^{4} - 29006080 x^{3} + 75011072 x^{2} + 211959808 x + 143392768 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3291419362365438198446597168601=3^{12}\cdot 59^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $80.79$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 59$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{7} - \frac{1}{8} a^{5} - \frac{1}{4} a^{4} - \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{8} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} + \frac{1}{16} a^{6} - \frac{3}{16} a^{4} - \frac{1}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{32} a^{10} - \frac{1}{32} a^{9} + \frac{1}{32} a^{7} + \frac{5}{32} a^{5} - \frac{1}{32} a^{4} + \frac{1}{16} a^{3} + \frac{1}{8} a^{2} - \frac{1}{2} a$, $\frac{1}{64} a^{11} - \frac{1}{64} a^{10} - \frac{3}{64} a^{8} - \frac{1}{16} a^{7} + \frac{1}{64} a^{6} + \frac{11}{64} a^{5} - \frac{5}{32} a^{4} - \frac{1}{8} a^{3} + \frac{1}{8} a^{2} - \frac{1}{4} a$, $\frac{1}{8448} a^{12} - \frac{31}{8448} a^{11} + \frac{1}{384} a^{10} - \frac{131}{8448} a^{9} + \frac{47}{4224} a^{8} + \frac{17}{8448} a^{7} - \frac{763}{8448} a^{6} - \frac{7}{2112} a^{5} + \frac{35}{192} a^{4} + \frac{103}{528} a^{3} + \frac{169}{528} a^{2} - \frac{1}{33} a + \frac{7}{33}$, $\frac{1}{435139584} a^{13} + \frac{18965}{435139584} a^{12} + \frac{533213}{217569792} a^{11} - \frac{987755}{435139584} a^{10} - \frac{5532871}{217569792} a^{9} + \frac{218539}{39558144} a^{8} + \frac{18418313}{435139584} a^{7} - \frac{5576981}{54392448} a^{6} - \frac{12073043}{108784896} a^{5} + \frac{1450189}{27196224} a^{4} + \frac{354797}{2472384} a^{3} + \frac{271285}{3399528} a^{2} + \frac{108781}{424941} a - \frac{6310}{141647}$, $\frac{1}{157520529408} a^{14} - \frac{169}{157520529408} a^{13} - \frac{756925}{13126710784} a^{12} - \frac{200836663}{157520529408} a^{11} + \frac{18102999}{1193337344} a^{10} - \frac{120157417}{14320048128} a^{9} - \frac{1263646277}{157520529408} a^{8} + \frac{28669269}{2386674688} a^{7} + \frac{169866665}{39380132352} a^{6} - \frac{4467554969}{19690066176} a^{5} + \frac{734331727}{3281677696} a^{4} - \frac{314075557}{4922516544} a^{3} - \frac{772951}{2596264} a^{2} + \frac{125622527}{307657284} a + \frac{31652848}{76914321}$, $\frac{1}{8474576310377190324998455296} a^{15} - \frac{22916279013700781}{8474576310377190324998455296} a^{14} + \frac{727950776898201163}{2118644077594297581249613824} a^{13} - \frac{474056013740367882138467}{8474576310377190324998455296} a^{12} + \frac{677491292374561859128661}{529661019398574395312403456} a^{11} + \frac{30436354475357167810256779}{2824858770125730108332818432} a^{10} + \frac{146673977317082287742068031}{8474576310377190324998455296} a^{9} - \frac{114445460891970340684075375}{4237288155188595162499227648} a^{8} + \frac{10301767709468631957201921}{176553673132858131770801152} a^{7} + \frac{42427480227932154532889975}{1059322038797148790624806912} a^{6} + \frac{19237456207575397884252911}{132415254849643598828100864} a^{5} - \frac{20330482660048725651078325}{88276836566429065885400576} a^{4} + \frac{20557932512764884263083}{488617176566950549181184} a^{3} + \frac{3708872857727589065681913}{11034604570803633235675072} a^{2} + \frac{1742512032463470393050621}{8275953428102724926756304} a - \frac{84244201482943634139984}{172415696418806769307423}$
Class group and class number
$C_{3}\times C_{3}\times C_{3}$, which has order $27$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{23334861610667887}{225034555096449462943744} a^{15} + \frac{452962179942571889}{675103665289348388831232} a^{14} + \frac{107092420291690197}{56258638774112365735936} a^{13} - \frac{3958088725153454137}{675103665289348388831232} a^{12} - \frac{6395631024352236149}{84387958161168548603904} a^{11} - \frac{31802395606712753039}{225034555096449462943744} a^{10} + \frac{859993839186684066965}{675103665289348388831232} a^{9} + \frac{1878335590302236732879}{337551832644674194415616} a^{8} - \frac{576779072740385679}{159825678335546493568} a^{7} - \frac{6336397354757037426967}{84387958161168548603904} a^{6} - \frac{1118455996084671751211}{5274247385073034287744} a^{5} + \frac{3937303510010280724781}{7032329846764045716992} a^{4} + \frac{6336761583215832343}{3538575904108040448} a^{3} + \frac{19810964373074576251}{239738517503319740352} a^{2} - \frac{1667818117330302938635}{219760307711376428656} a - \frac{352335055177326930802}{41205057695883080373} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 383035476.079 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $QD_{16}$ |
| Character table for $QD_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{177}) \), \(\Q(\sqrt{-59}) \), \(\Q(\sqrt{-3}, \sqrt{-59})\), 4.2.1848411.1 x2, 4.0.616137.1 x2, 8.0.3416623224921.1, 8.2.1814226932433051.1 x4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | R |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 3.8.6.1 | $x^{8} + 9 x^{4} + 36$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ | |
| 59 | Data not computed | ||||||