Properties

Label 16.0.32798502387...5625.2
Degree $16$
Signature $[0, 8]$
Discriminant $5^{8}\cdot 29^{6}\cdot 109^{4}$
Root discriminant $25.54$
Ramified primes $5, 29, 109$
Class number $4$
Class group $[4]$
Galois group $C_2^4.C_2^3$ (as 16T392)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![359, 99, 4491, -14739, 19482, -14597, 8870, -5737, 3148, -1463, 693, -284, 112, -43, 12, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 12*x^14 - 43*x^13 + 112*x^12 - 284*x^11 + 693*x^10 - 1463*x^9 + 3148*x^8 - 5737*x^7 + 8870*x^6 - 14597*x^5 + 19482*x^4 - 14739*x^3 + 4491*x^2 + 99*x + 359)
 
gp: K = bnfinit(x^16 - 4*x^15 + 12*x^14 - 43*x^13 + 112*x^12 - 284*x^11 + 693*x^10 - 1463*x^9 + 3148*x^8 - 5737*x^7 + 8870*x^6 - 14597*x^5 + 19482*x^4 - 14739*x^3 + 4491*x^2 + 99*x + 359, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 12 x^{14} - 43 x^{13} + 112 x^{12} - 284 x^{11} + 693 x^{10} - 1463 x^{9} + 3148 x^{8} - 5737 x^{7} + 8870 x^{6} - 14597 x^{5} + 19482 x^{4} - 14739 x^{3} + 4491 x^{2} + 99 x + 359 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(32798502387606516015625=5^{8}\cdot 29^{6}\cdot 109^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $25.54$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 29, 109$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{20} a^{12} - \frac{1}{10} a^{11} + \frac{1}{10} a^{9} + \frac{1}{20} a^{8} - \frac{1}{5} a^{7} - \frac{1}{4} a^{6} + \frac{1}{5} a^{5} - \frac{7}{20} a^{4} + \frac{7}{20} a^{2} + \frac{3}{10} a - \frac{3}{20}$, $\frac{1}{20} a^{13} + \frac{1}{20} a^{11} + \frac{1}{10} a^{10} - \frac{1}{10} a^{8} - \frac{3}{20} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{3}{10} a^{4} + \frac{7}{20} a^{3} - \frac{3}{10} a - \frac{3}{10}$, $\frac{1}{20} a^{14} - \frac{1}{20} a^{11} + \frac{1}{20} a^{9} - \frac{1}{5} a^{8} - \frac{1}{10} a^{7} + \frac{1}{20} a^{6} - \frac{3}{20} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} + \frac{7}{20} a^{2} - \frac{7}{20} a + \frac{3}{20}$, $\frac{1}{34854450664488045800} a^{15} + \frac{499595998711688947}{34854450664488045800} a^{14} - \frac{804930750464183451}{34854450664488045800} a^{13} - \frac{9718245854689641}{8713612666122011450} a^{12} - \frac{1167025302504835041}{17427225332244022900} a^{11} - \frac{777128743998143279}{8713612666122011450} a^{10} + \frac{5609032401404252787}{34854450664488045800} a^{9} + \frac{277115813025011151}{8713612666122011450} a^{8} + \frac{561388809502323169}{4356806333061005725} a^{7} - \frac{1277564313649196197}{6970890132897609160} a^{6} + \frac{1344576555042187449}{6970890132897609160} a^{5} - \frac{210955165058290264}{4356806333061005725} a^{4} - \frac{1421516377603363663}{3485445066448804580} a^{3} - \frac{14054866251956504509}{34854450664488045800} a^{2} + \frac{2715674932640586001}{17427225332244022900} a - \frac{9087515839236109289}{34854450664488045800}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{4}$, which has order $4$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 11170.5670423 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4.C_2^3$ (as 16T392):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 26 conjugacy class representatives for $C_2^4.C_2^3$
Character table for $C_2^4.C_2^3$ is not computed

Intermediate fields

\(\Q(\sqrt{5}) \), 4.0.79025.1, 4.0.2725.1, 4.4.725.1, 8.0.6244950625.2, 8.0.6244950625.3, 8.0.6244950625.5

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$29$29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.2.1.2$x^{2} + 58$$2$$1$$1$$C_2$$[\ ]_{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
29.4.2.1$x^{4} + 145 x^{2} + 7569$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$109$$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{109}$$x + 6$$1$$1$$0$Trivial$[\ ]$
109.4.2.1$x^{4} + 1199 x^{2} + 427716$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
109.4.2.1$x^{4} + 1199 x^{2} + 427716$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$