Normalized defining polynomial
\( x^{16} - x^{15} + 25 x^{14} - 71 x^{13} + 664 x^{12} + 2717 x^{11} + 14056 x^{10} + 38603 x^{9} + 219711 x^{8} + 318736 x^{7} + 672889 x^{6} + 1023646 x^{5} + 1741879 x^{4} - 1221277 x^{3} + 992380 x^{2} - 536558 x + 707281 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32790240335000876777587890625=5^{12}\cdot 7^{8}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(455=5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{455}(64,·)$, $\chi_{455}(1,·)$, $\chi_{455}(398,·)$, $\chi_{455}(337,·)$, $\chi_{455}(274,·)$, $\chi_{455}(83,·)$, $\chi_{455}(216,·)$, $\chi_{455}(92,·)$, $\chi_{455}(34,·)$, $\chi_{455}(356,·)$, $\chi_{455}(428,·)$, $\chi_{455}(174,·)$, $\chi_{455}(307,·)$, $\chi_{455}(246,·)$, $\chi_{455}(183,·)$, $\chi_{455}(447,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{5} - \frac{1}{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{6} - \frac{1}{4} a$, $\frac{1}{68} a^{12} - \frac{3}{34} a^{11} - \frac{1}{17} a^{10} + \frac{2}{17} a^{9} + \frac{4}{17} a^{8} + \frac{23}{68} a^{7} + \frac{15}{34} a^{6} - \frac{7}{17} a^{5} + \frac{4}{17} a^{4} + \frac{2}{17} a^{3} - \frac{21}{68} a^{2} - \frac{3}{34} a - \frac{4}{17}$, $\frac{1}{37830400786978628} a^{13} + \frac{104319411994351}{18915200393489314} a^{12} - \frac{53108588345430}{9457600196744657} a^{11} - \frac{4237834067634111}{37830400786978628} a^{10} + \frac{3366138963052668}{9457600196744657} a^{9} - \frac{16630736466900653}{37830400786978628} a^{8} + \frac{7826848711663357}{18915200393489314} a^{7} + \frac{2012658462353323}{9457600196744657} a^{6} + \frac{12026179982069727}{37830400786978628} a^{5} - \frac{614840014634457}{9457600196744657} a^{4} + \frac{6048483208661503}{37830400786978628} a^{3} - \frac{2677666417899667}{18915200393489314} a^{2} - \frac{2934636896332010}{9457600196744657} a - \frac{612256069729409}{1304496578861332}$, $\frac{1}{1097081622822380212} a^{14} - \frac{1}{1097081622822380212} a^{13} + \frac{394473370315432}{274270405705595053} a^{12} - \frac{95417704821144357}{1097081622822380212} a^{11} + \frac{66643574185712911}{548540811411190106} a^{10} - \frac{211231668875808037}{1097081622822380212} a^{9} + \frac{526686522197902553}{1097081622822380212} a^{8} + \frac{15618540503032777}{274270405705595053} a^{7} - \frac{18297061830452679}{1097081622822380212} a^{6} + \frac{222309175227848513}{548540811411190106} a^{5} - \frac{455561820807304145}{1097081622822380212} a^{4} + \frac{391993099671957773}{1097081622822380212} a^{3} + \frac{37499415913494765}{274270405705595053} a^{2} + \frac{12865722513978173}{37830400786978628} a + \frac{80089908241509}{652248289430666}$, $\frac{1}{31815367061849026148} a^{15} - \frac{1}{31815367061849026148} a^{14} + \frac{25}{31815367061849026148} a^{13} + \frac{201847204693919427}{31815367061849026148} a^{12} - \frac{85203690736658191}{15907683530924513074} a^{11} + \frac{1025198318755958221}{15907683530924513074} a^{10} + \frac{5326871234786775345}{31815367061849026148} a^{9} + \frac{2008832694477233599}{31815367061849026148} a^{8} + \frac{10555296811118491285}{31815367061849026148} a^{7} + \frac{2374496301140055505}{15907683530924513074} a^{6} - \frac{2796498281815304717}{7953841765462256537} a^{5} + \frac{9673656437706944281}{31815367061849026148} a^{4} - \frac{12642386200283080953}{31815367061849026148} a^{3} - \frac{377389679378924743}{1097081622822380212} a^{2} + \frac{6165454456154741}{18915200393489314} a + \frac{540557365985433}{1304496578861332}$
Class group and class number
$C_{4}\times C_{40}$, which has order $160$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{6329489532}{16133553276799709} a^{15} - \frac{12131521603}{16133553276799709} a^{14} + \frac{312782274373}{32267106553599418} a^{13} - \frac{2343052744033}{64534213107198836} a^{12} + \frac{8847043993353}{32267106553599418} a^{11} + \frac{27775382438799}{32267106553599418} a^{10} + \frac{68124823290377}{16133553276799709} a^{9} + \frac{284007887503067}{32267106553599418} a^{8} + \frac{4259483943268837}{64534213107198836} a^{7} + \frac{894850043597635}{32267106553599418} a^{6} + \frac{1458696794832025}{32267106553599418} a^{5} + \frac{137297704555761}{16133553276799709} a^{4} - \frac{4163221739673}{1112658846675842} a^{3} - \frac{119685975654131439}{64534213107198836} a^{2} + \frac{107073864583}{38367546437098} a + \frac{443591724701}{38367546437098} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 925356.94221623 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13 | Data not computed | ||||||