Normalized defining polynomial
\( x^{16} - 31 x^{14} - 2 x^{13} + 458 x^{12} - 376 x^{11} - 2816 x^{10} + 4356 x^{9} + 13769 x^{8} - 39196 x^{7} - 37967 x^{6} + 192150 x^{5} - 77783 x^{4} - 416788 x^{3} + 772584 x^{2} + 40056 x + 250721 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32790240335000876777587890625=5^{12}\cdot 7^{8}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.57$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 7, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(455=5\cdot 7\cdot 13\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{455}(64,·)$, $\chi_{455}(1,·)$, $\chi_{455}(118,·)$, $\chi_{455}(398,·)$, $\chi_{455}(272,·)$, $\chi_{455}(274,·)$, $\chi_{455}(83,·)$, $\chi_{455}(281,·)$, $\chi_{455}(27,·)$, $\chi_{455}(99,·)$, $\chi_{455}(421,·)$, $\chi_{455}(363,·)$, $\chi_{455}(239,·)$, $\chi_{455}(307,·)$, $\chi_{455}(246,·)$, $\chi_{455}(447,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{10} - \frac{1}{2} a^{5} + \frac{1}{3} a^{4} - \frac{1}{6} a^{3} + \frac{1}{6} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{12} - \frac{1}{12} a^{11} + \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} - \frac{1}{4} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a + \frac{5}{12}$, $\frac{1}{48} a^{14} - \frac{1}{24} a^{13} + \frac{1}{6} a^{11} + \frac{1}{24} a^{10} - \frac{1}{4} a^{9} + \frac{1}{8} a^{8} - \frac{1}{4} a^{7} - \frac{13}{48} a^{6} - \frac{7}{24} a^{5} + \frac{7}{24} a^{4} + \frac{1}{3} a^{3} - \frac{7}{16} a^{2} + \frac{7}{24} a + \frac{13}{48}$, $\frac{1}{8484937210756062960964877417978707392} a^{15} + \frac{36787977974391783677339990091494569}{8484937210756062960964877417978707392} a^{14} + \frac{144414011817764457756538809430927081}{4242468605378031480482438708989353696} a^{13} - \frac{4689309368096254229115433142157599}{88384762612042322510050806437278202} a^{12} + \frac{331187221361578696400683986107378759}{1414156201792677160160812902996451232} a^{11} - \frac{879091858448939993635644741519231311}{4242468605378031480482438708989353696} a^{10} + \frac{14723761160659734149883221293772867}{1414156201792677160160812902996451232} a^{9} + \frac{10746902675511635640556185042118081}{1414156201792677160160812902996451232} a^{8} - \frac{1581216765888500372286145865883555457}{8484937210756062960964877417978707392} a^{7} - \frac{1779789899114705441328803945560278917}{8484937210756062960964877417978707392} a^{6} + \frac{48660543869046882186025524372998243}{707078100896338580080406451498225616} a^{5} + \frac{4060180353851426047571934779224321}{15771258756052161637481184791781984} a^{4} - \frac{824579379432473661793844099394621485}{8484937210756062960964877417978707392} a^{3} + \frac{1442386956240614872586001958409082839}{8484937210756062960964877417978707392} a^{2} - \frac{4058074838147083421870210526162692585}{8484937210756062960964877417978707392} a + \frac{3683584027979322908586131266284882247}{8484937210756062960964877417978707392}$
Class group and class number
$C_{4}\times C_{40}$, which has order $160$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 162215.76213779865 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4^2$ |
| Character table for $C_4^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 13 | Data not computed | ||||||