Normalized defining polynomial
\( x^{16} - 4 x^{15} + 22 x^{14} + 16 x^{13} + 78 x^{12} - 132 x^{11} + 1310 x^{10} - 1932 x^{9} - 5837 x^{8} - 3294 x^{7} + 14832 x^{6} - 1270 x^{5} + 2923 x^{4} + 19178 x^{3} + 12447 x^{2} + 3794 x + 1977 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(327296709839930989200080896=2^{16}\cdot 11^{8}\cdot 13^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $45.41$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 13$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{39} a^{12} + \frac{1}{3} a^{11} + \frac{16}{39} a^{10} + \frac{19}{39} a^{9} - \frac{8}{39} a^{8} + \frac{7}{39} a^{7} + \frac{1}{13} a^{6} + \frac{2}{39} a^{5} - \frac{4}{13} a^{3} - \frac{6}{13} a^{2} - \frac{11}{39} a - \frac{4}{13}$, $\frac{1}{39} a^{13} + \frac{1}{13} a^{11} + \frac{2}{13} a^{10} + \frac{6}{13} a^{9} - \frac{2}{13} a^{8} - \frac{10}{39} a^{7} + \frac{2}{39} a^{6} + \frac{1}{3} a^{5} - \frac{4}{13} a^{4} - \frac{6}{13} a^{3} - \frac{11}{39} a^{2} + \frac{14}{39} a$, $\frac{1}{39} a^{14} + \frac{2}{13} a^{11} + \frac{3}{13} a^{10} + \frac{5}{13} a^{9} + \frac{14}{39} a^{8} - \frac{19}{39} a^{7} + \frac{4}{39} a^{6} - \frac{6}{13} a^{5} - \frac{6}{13} a^{4} - \frac{14}{39} a^{3} - \frac{10}{39} a^{2} - \frac{2}{13} a - \frac{1}{13}$, $\frac{1}{3201628942641887162289322531550769} a^{15} - \frac{10383944641993798347951722559070}{3201628942641887162289322531550769} a^{14} + \frac{6998897467755242858133878986656}{1067209647547295720763107510516923} a^{13} + \frac{31873067775696611086210751953735}{3201628942641887162289322531550769} a^{12} - \frac{516357082751511606472704150720203}{3201628942641887162289322531550769} a^{11} - \frac{673900012932281581438348229778149}{3201628942641887162289322531550769} a^{10} + \frac{84902577992456475097107811217014}{1067209647547295720763107510516923} a^{9} - \frac{801526552622581896483638383133753}{3201628942641887162289322531550769} a^{8} - \frac{329995109467620553054686834886760}{1067209647547295720763107510516923} a^{7} - \frac{588421963326248457736092144424495}{3201628942641887162289322531550769} a^{6} - \frac{340106125568623748267803770205804}{3201628942641887162289322531550769} a^{5} + \frac{184448504081367071898390127125787}{3201628942641887162289322531550769} a^{4} + \frac{1226936445552150104333315633239663}{3201628942641887162289322531550769} a^{3} - \frac{971767756279068216986750460178643}{3201628942641887162289322531550769} a^{2} - \frac{22888022753679681740736396608555}{3201628942641887162289322531550769} a + \frac{310338857713963425977131742373846}{1067209647547295720763107510516923}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 964831.587868 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 48 |
| The 10 conjugacy class representatives for $A_4:C_4$ |
| Character table for $A_4:C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.4253392.1, 4.0.2197.1, 8.8.18091343505664.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/17.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/29.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $11$ | 11.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 11.12.8.1 | $x^{12} - 33 x^{9} + 363 x^{6} - 1331 x^{3} + 117128$ | $3$ | $4$ | $8$ | $C_3 : C_4$ | $[\ ]_{3}^{4}$ | |
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |