Normalized defining polynomial
\( x^{16} - 8 x^{15} + 52 x^{14} - 204 x^{13} + 668 x^{12} - 1460 x^{11} + 2726 x^{10} - 3152 x^{9} + 4343 x^{8} - 4244 x^{7} + 8534 x^{6} - 6492 x^{5} + 10078 x^{4} - 608 x^{3} + 6518 x^{2} + 2728 x + 961 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3262849744896000000000000=2^{36}\cdot 3^{4}\cdot 5^{12}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $34.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{30247500046985612121622875916549} a^{15} + \frac{2718154130823762289381806718526}{30247500046985612121622875916549} a^{14} + \frac{7587023256101007314914167570679}{30247500046985612121622875916549} a^{13} - \frac{6877934224129117802062702846172}{30247500046985612121622875916549} a^{12} - \frac{2433645948878338900645005997413}{30247500046985612121622875916549} a^{11} - \frac{9206903527958828512868964593308}{30247500046985612121622875916549} a^{10} - \frac{1976889153864206078045146210740}{30247500046985612121622875916549} a^{9} - \frac{7008754120888396550791721098327}{30247500046985612121622875916549} a^{8} - \frac{6157927041044460716353060547389}{30247500046985612121622875916549} a^{7} - \frac{7647092051426707850910565543488}{30247500046985612121622875916549} a^{6} - \frac{37252927652899187322061824710}{30247500046985612121622875916549} a^{5} + \frac{13962039089308661415675385782830}{30247500046985612121622875916549} a^{4} + \frac{79392278600560032877180964669}{30247500046985612121622875916549} a^{3} - \frac{4704028745124349873626338781427}{30247500046985612121622875916549} a^{2} + \frac{12795810548299898339141055726382}{30247500046985612121622875916549} a - \frac{372305874847282617327545968073}{975725807967277810374931481179}$
Class group and class number
$C_{2}\times C_{2}\times C_{12}$, which has order $48$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.13535725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3:(C_2\times C_4)$ (as 16T68):
| A solvable group of order 64 |
| The 34 conjugacy class representatives for $C_2^3:(C_2\times C_4)$ |
| Character table for $C_2^3:(C_2\times C_4)$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.18063360000.1, \(\Q(\zeta_{40})^+\), 8.0.451584000000.15 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 7.4.0.1 | $x^{4} + x^{2} - 3 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |