Properties

Label 16.0.32628497448...0000.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{36}\cdot 3^{4}\cdot 5^{12}\cdot 7^{4}$
Root discriminant $34.05$
Ramified primes $2, 3, 5, 7$
Class number $48$ (GRH)
Class group $[2, 2, 12]$ (GRH)
Galois group $C_2^3:(C_2\times C_4)$ (as 16T68)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![961, 2728, 6518, -608, 10078, -6492, 8534, -4244, 4343, -3152, 2726, -1460, 668, -204, 52, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 52*x^14 - 204*x^13 + 668*x^12 - 1460*x^11 + 2726*x^10 - 3152*x^9 + 4343*x^8 - 4244*x^7 + 8534*x^6 - 6492*x^5 + 10078*x^4 - 608*x^3 + 6518*x^2 + 2728*x + 961)
 
gp: K = bnfinit(x^16 - 8*x^15 + 52*x^14 - 204*x^13 + 668*x^12 - 1460*x^11 + 2726*x^10 - 3152*x^9 + 4343*x^8 - 4244*x^7 + 8534*x^6 - 6492*x^5 + 10078*x^4 - 608*x^3 + 6518*x^2 + 2728*x + 961, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 52 x^{14} - 204 x^{13} + 668 x^{12} - 1460 x^{11} + 2726 x^{10} - 3152 x^{9} + 4343 x^{8} - 4244 x^{7} + 8534 x^{6} - 6492 x^{5} + 10078 x^{4} - 608 x^{3} + 6518 x^{2} + 2728 x + 961 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3262849744896000000000000=2^{36}\cdot 3^{4}\cdot 5^{12}\cdot 7^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $34.05$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{30247500046985612121622875916549} a^{15} + \frac{2718154130823762289381806718526}{30247500046985612121622875916549} a^{14} + \frac{7587023256101007314914167570679}{30247500046985612121622875916549} a^{13} - \frac{6877934224129117802062702846172}{30247500046985612121622875916549} a^{12} - \frac{2433645948878338900645005997413}{30247500046985612121622875916549} a^{11} - \frac{9206903527958828512868964593308}{30247500046985612121622875916549} a^{10} - \frac{1976889153864206078045146210740}{30247500046985612121622875916549} a^{9} - \frac{7008754120888396550791721098327}{30247500046985612121622875916549} a^{8} - \frac{6157927041044460716353060547389}{30247500046985612121622875916549} a^{7} - \frac{7647092051426707850910565543488}{30247500046985612121622875916549} a^{6} - \frac{37252927652899187322061824710}{30247500046985612121622875916549} a^{5} + \frac{13962039089308661415675385782830}{30247500046985612121622875916549} a^{4} + \frac{79392278600560032877180964669}{30247500046985612121622875916549} a^{3} - \frac{4704028745124349873626338781427}{30247500046985612121622875916549} a^{2} + \frac{12795810548299898339141055726382}{30247500046985612121622875916549} a - \frac{372305874847282617327545968073}{975725807967277810374931481179}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{12}$, which has order $48$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 7114.13535725 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3:(C_2\times C_4)$ (as 16T68):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 34 conjugacy class representatives for $C_2^3:(C_2\times C_4)$
Character table for $C_2^3:(C_2\times C_4)$ is not computed

Intermediate fields

\(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{20})^+\), 4.4.8000.1, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.18063360000.1, \(\Q(\zeta_{40})^+\), 8.0.451584000000.15

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.4.0.1$x^{4} - x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
3.8.4.1$x^{8} + 36 x^{4} - 27 x^{2} + 324$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$
$5$5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
5.8.6.1$x^{8} - 5 x^{4} + 400$$4$$2$$6$$C_4\times C_2$$[\ ]_{4}^{2}$
$7$7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.8.4.1$x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$$2$$4$$4$$C_4\times C_2$$[\ ]_{2}^{4}$