Normalized defining polynomial
\( x^{16} - 5 x^{15} + 14 x^{14} - 30 x^{13} + 57 x^{12} - 100 x^{11} + 157 x^{10} - 215 x^{9} + 250 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(3243658447265625\)
\(\medspace = 3^{12}\cdot 5^{14}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.32\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{3/4}5^{7/8}\approx 9.320510388204081$ | ||
Ramified primes: |
\(3\), \(5\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Gal(K/\Q) }$: | $16$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{487621}a^{15}+\frac{220676}{487621}a^{14}-\frac{196521}{487621}a^{13}+\frac{73288}{487621}a^{12}-\frac{144143}{487621}a^{11}-\frac{153169}{487621}a^{10}-\frac{87833}{487621}a^{9}-\frac{139738}{487621}a^{8}+\frac{118333}{487621}a^{7}-\frac{210501}{487621}a^{6}+\frac{131188}{487621}a^{5}+\frac{152527}{487621}a^{4}-\frac{179065}{487621}a^{3}+\frac{74924}{487621}a^{2}+\frac{50392}{487621}a-\frac{127579}{487621}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -\frac{587011}{487621} a^{15} + \frac{2643045}{487621} a^{14} - \frac{6751280}{487621} a^{13} + \frac{13641566}{487621} a^{12} - \frac{25288502}{487621} a^{11} + \frac{43337559}{487621} a^{10} - \frac{65498107}{487621} a^{9} + \frac{84984552}{487621} a^{8} - \frac{91858719}{487621} a^{7} + \frac{79309987}{487621} a^{6} - \frac{51477606}{487621} a^{5} + \frac{25347031}{487621} a^{4} - \frac{12111433}{487621} a^{3} + \frac{7078246}{487621} a^{2} - \frac{3518936}{487621} a + \frac{467947}{487621} \)
(order $30$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{218084}{487621}a^{15}-\frac{1312674}{487621}a^{14}+\frac{3800136}{487621}a^{13}-\frac{8102882}{487621}a^{12}+\frac{15297246}{487621}a^{11}-\frac{27025988}{487621}a^{10}+\frac{42666798}{487621}a^{9}-\frac{58286875}{487621}a^{8}+\frac{67459487}{487621}a^{7}-\frac{63699390}{487621}a^{6}+\frac{46628475}{487621}a^{5}-\frac{25699781}{487621}a^{4}+\frac{12594471}{487621}a^{3}-\frac{6793167}{487621}a^{2}+\frac{3100177}{487621}a-\frac{747239}{487621}$, $\frac{26168}{487621}a^{15}-\frac{245935}{487621}a^{14}+\frac{864780}{487621}a^{13}-\frac{1963493}{487621}a^{12}+\frac{3715379}{487621}a^{11}-\frac{6708466}{487621}a^{10}+\frac{10959112}{487621}a^{9}-\frac{15597977}{487621}a^{8}+\frac{18674192}{487621}a^{7}-\frac{18265329}{487621}a^{6}+\frac{13729132}{487621}a^{5}-\frac{7165664}{487621}a^{4}+\frac{2702995}{487621}a^{3}-\frac{1575672}{487621}a^{2}+\frac{1105914}{487621}a-\frac{233906}{487621}$, $\frac{53423}{487621}a^{15}-\frac{38969}{487621}a^{14}-\frac{261253}{487621}a^{13}+\frac{1131057}{487621}a^{12}-\frac{2478762}{487621}a^{11}+\frac{4896724}{487621}a^{10}-\frac{9190275}{487621}a^{9}+\frac{15370587}{487621}a^{8}-\frac{21757730}{487621}a^{7}+\frac{25276871}{487621}a^{6}-\frac{23525917}{487621}a^{5}+\frac{15419262}{487621}a^{4}-\frac{6867411}{487621}a^{3}+\frac{2222168}{487621}a^{2}-\frac{2014209}{487621}a+\frac{801042}{487621}$, $\frac{76028}{487621}a^{15}-\frac{508440}{487621}a^{14}+\frac{1559336}{487621}a^{13}-\frac{3518450}{487621}a^{12}+\frac{6717044}{487621}a^{11}-\frac{11958535}{487621}a^{10}+\frac{19219490}{487621}a^{9}-\frac{27021092}{487621}a^{8}+\frac{32196860}{487621}a^{7}-\frac{31456552}{487621}a^{6}+\frac{24054759}{487621}a^{5}-\frac{12958012}{487621}a^{4}+\frac{5300710}{487621}a^{3}-\frac{2017134}{487621}a^{2}+\frac{1427642}{487621}a-\frac{306901}{487621}$, $\frac{250041}{487621}a^{15}-\frac{1144644}{487621}a^{14}+\frac{3161777}{487621}a^{13}-\frac{6619066}{487621}a^{12}+\frac{12549256}{487621}a^{11}-\frac{21744292}{487621}a^{10}+\frac{33756915}{487621}a^{9}-\frac{45582877}{487621}a^{8}+\frac{51922441}{487621}a^{7}-\frac{48344280}{487621}a^{6}+\frac{35222750}{487621}a^{5}-\frac{19802506}{487621}a^{4}+\frac{9033354}{487621}a^{3}-\frac{4715525}{487621}a^{2}+\frac{2377537}{487621}a-\frac{790161}{487621}$, $\frac{322766}{487621}a^{15}-\frac{1552517}{487621}a^{14}+\frac{3831183}{487621}a^{13}-\frac{7422038}{487621}a^{12}+\frac{13601081}{487621}a^{11}-\frac{23208556}{487621}a^{10}+\frac{34424711}{487621}a^{9}-\frac{43081561}{487621}a^{8}+\frac{44352522}{487621}a^{7}-\frac{35002443}{487621}a^{6}+\frac{18986071}{487621}a^{5}-\frac{7000793}{487621}a^{4}+\frac{3573824}{487621}a^{3}-\frac{2594195}{487621}a^{2}+\frac{225817}{487621}a-\frac{32927}{487621}$, $\frac{505949}{487621}a^{15}-\frac{1729330}{487621}a^{14}+\frac{4120407}{487621}a^{13}-\frac{7975327}{487621}a^{12}+\frac{14706304}{487621}a^{11}-\frac{24428385}{487621}a^{10}+\frac{35430030}{487621}a^{9}-\frac{44018462}{487621}a^{8}+\frac{44730148}{487621}a^{7}-\frac{36088930}{487621}a^{6}+\frac{21409837}{487621}a^{5}-\frac{11231620}{487621}a^{4}+\frac{5637462}{487621}a^{3}-\frac{3834632}{487621}a^{2}+\frac{1493265}{487621}a-\frac{612838}{487621}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 112.874368042 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 112.874368042 \cdot 1}{30\cdot\sqrt{3243658447265625}}\cr\approx \mathstrut & 0.160470595877 \end{aligned}\]
Galois group
$\OD_{16}$ (as 16T6):
A solvable group of order 16 |
The 10 conjugacy class representatives for $C_8: C_2$ |
Character table for $C_8: C_2$ |
Intermediate fields
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{5})\), \(\Q(\zeta_{15})\), 8.4.56953125.1 x2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 8 sibling: | 8.4.56953125.1 |
Minimal sibling: | 8.4.56953125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | R | ${\href{/padicField/7.8.0.1}{8} }^{2}$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.8.0.1}{8} }^{2}$ | ${\href{/padicField/19.4.0.1}{4} }^{4}$ | ${\href{/padicField/23.8.0.1}{8} }^{2}$ | ${\href{/padicField/29.2.0.1}{2} }^{8}$ | ${\href{/padicField/31.2.0.1}{2} }^{8}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{4}$ | ${\href{/padicField/43.8.0.1}{8} }^{2}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.16.12.2 | $x^{16} + 12 x^{12} + 36 x^{8} + 324$ | $4$ | $4$ | $12$ | $C_8: C_2$ | $[\ ]_{4}^{4}$ |
\(5\)
| 5.16.14.1 | $x^{16} - 20 x^{8} - 100$ | $8$ | $2$ | $14$ | $C_8: C_2$ | $[\ ]_{8}^{2}$ |