Normalized defining polynomial
\( x^{16} - 2 x^{15} - 66 x^{14} + 28 x^{13} + 1977 x^{12} + 3290 x^{11} - 39834 x^{10} - 160157 x^{9} + 274964 x^{8} + 3051194 x^{7} + 7432505 x^{6} - 10471450 x^{5} - 86737142 x^{4} - 116122039 x^{3} + 140732982 x^{2} + 648497959 x + 1031411207 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32349497931606921267167334562710001=31^{8}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $143.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $31, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4} a^{12} - \frac{1}{4} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{4} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a + \frac{1}{4}$, $\frac{1}{4} a^{13} - \frac{1}{4} a^{10} - \frac{1}{4} a^{7} - \frac{1}{2} a^{5} - \frac{1}{4} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} + \frac{1}{4} a$, $\frac{1}{124} a^{14} + \frac{1}{31} a^{13} + \frac{11}{124} a^{12} + \frac{27}{124} a^{11} + \frac{14}{31} a^{10} - \frac{27}{124} a^{9} - \frac{45}{124} a^{8} + \frac{6}{31} a^{7} + \frac{47}{124} a^{6} + \frac{23}{124} a^{5} + \frac{8}{31} a^{4} - \frac{37}{124} a^{3} + \frac{7}{124} a^{2} + \frac{29}{62} a - \frac{37}{124}$, $\frac{1}{10155538108613418184008424312162330910107290581051891673716} a^{15} - \frac{1478830257746895480986815415496797385041471473530551355}{2538884527153354546002106078040582727526822645262972918429} a^{14} + \frac{1021769551109505044156337709339711443093500822894354059333}{10155538108613418184008424312162330910107290581051891673716} a^{13} + \frac{129101236809484986666503313888838776419821148049257198453}{10155538108613418184008424312162330910107290581051891673716} a^{12} - \frac{333719227293030413711894872848634370202255125658335476614}{2538884527153354546002106078040582727526822645262972918429} a^{11} - \frac{16067558315198513612340375370219669311365047227854430423}{327598003503658651097045945553623577745396470356512634636} a^{10} - \frac{1315561801150423950931157656808532344456828883310304464255}{10155538108613418184008424312162330910107290581051891673716} a^{9} + \frac{582837912993537712562969930643481663123725961181979498011}{2538884527153354546002106078040582727526822645262972918429} a^{8} + \frac{1239342139225492836933678208759031470629668023385937217721}{10155538108613418184008424312162330910107290581051891673716} a^{7} + \frac{5067183206664539235583152475748251808649571122130012694217}{10155538108613418184008424312162330910107290581051891673716} a^{6} + \frac{1049712455011424184468677594016744199112823504154567800334}{2538884527153354546002106078040582727526822645262972918429} a^{5} - \frac{964512417370713838783756173895201136751250221509361825983}{10155538108613418184008424312162330910107290581051891673716} a^{4} - \frac{3700755871901389616819089581580511150194374843382705874671}{10155538108613418184008424312162330910107290581051891673716} a^{3} + \frac{1763415815923432855553367051270997318648452283746129191989}{5077769054306709092004212156081165455053645290525945836858} a^{2} + \frac{2584157581112408777464597153063293799153827691019606896777}{10155538108613418184008424312162330910107290581051891673716} a + \frac{293963216159070370658248268924759044955748361667469250825}{5077769054306709092004212156081165455053645290525945836858}$
Class group and class number
$C_{2}\times C_{2}\times C_{32}$, which has order $128$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 309377418.474 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_4$ (as 16T41):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $C_2^3.C_4$ |
| Character table for $C_2^3.C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.2.2136551.1, 4.0.66233081.2, 4.2.52111.1, 8.0.179859661768855001.2 x2, 8.0.4386821018752561.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $41$ | 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 41.8.7.3 | $x^{8} - 53136$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |