Normalized defining polynomial
\( x^{16} - 3 x^{15} + 9 x^{14} - 22 x^{13} + 44 x^{12} - 30 x^{11} + 71 x^{10} + 31 x^{9} + 28 x^{8} + 141 x^{7} + 262 x^{6} + 407 x^{5} + 561 x^{4} + 393 x^{3} + 191 x^{2} + 48 x + 9 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(322581582210337451521=13^{12}\cdot 61^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.13$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} + \frac{1}{3} a$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{3}$, $\frac{1}{3} a^{8} + \frac{1}{3} a^{4}$, $\frac{1}{3} a^{9} - \frac{1}{3} a$, $\frac{1}{9} a^{10} - \frac{1}{9} a^{6} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{11} - \frac{1}{9} a^{7} - \frac{2}{9} a^{3}$, $\frac{1}{27} a^{12} - \frac{1}{27} a^{11} - \frac{1}{27} a^{10} - \frac{1}{27} a^{8} - \frac{2}{27} a^{7} + \frac{4}{27} a^{6} + \frac{1}{9} a^{5} - \frac{11}{27} a^{4} + \frac{8}{27} a^{3} + \frac{5}{27} a^{2} + \frac{4}{9} a + \frac{1}{3}$, $\frac{1}{27} a^{13} + \frac{1}{27} a^{11} - \frac{1}{27} a^{10} - \frac{1}{27} a^{9} - \frac{1}{9} a^{8} - \frac{1}{27} a^{7} - \frac{2}{27} a^{6} + \frac{1}{27} a^{5} - \frac{1}{9} a^{4} + \frac{7}{27} a^{3} + \frac{8}{27} a^{2} + \frac{1}{9} a + \frac{1}{3}$, $\frac{1}{81} a^{14} + \frac{1}{81} a^{13} - \frac{1}{81} a^{12} - \frac{4}{81} a^{11} - \frac{1}{27} a^{10} - \frac{13}{81} a^{9} - \frac{11}{81} a^{8} - \frac{2}{81} a^{7} + \frac{1}{27} a^{6} - \frac{8}{81} a^{5} + \frac{17}{81} a^{4} + \frac{29}{81} a^{3} - \frac{11}{81} a^{2} + \frac{8}{27} a + \frac{2}{9}$, $\frac{1}{3339360027} a^{15} + \frac{3844445}{1113120009} a^{14} + \frac{50973406}{3339360027} a^{13} - \frac{9679157}{1113120009} a^{12} - \frac{33747035}{3339360027} a^{11} - \frac{110112568}{3339360027} a^{10} - \frac{415163761}{3339360027} a^{9} - \frac{133425413}{1113120009} a^{8} - \frac{90082753}{3339360027} a^{7} - \frac{490132364}{3339360027} a^{6} + \frac{374634781}{3339360027} a^{5} - \frac{11371348}{41226667} a^{4} - \frac{684583696}{3339360027} a^{3} - \frac{954885115}{3339360027} a^{2} - \frac{461290871}{1113120009} a - \frac{106989338}{371040003}$
Class group and class number
Trivial group, which has order $1$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5480.44012635 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.0.2197.1, 4.4.10309.1, 4.0.134017.1, 8.0.294435349.1 x2, 8.4.1381581253.1 x2, 8.0.17960556289.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 13.8.6.1 | $x^{8} - 13 x^{4} + 2704$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $61$ | $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{61}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 61.4.2.1 | $x^{4} + 183 x^{2} + 14884$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |