Normalized defining polynomial
\( x^{16} - 2 x^{15} + 11 x^{14} + 4 x^{13} + 38 x^{12} + 59 x^{11} + 108 x^{10} + 326 x^{9} + 108 x^{8} + 649 x^{7} + 983 x^{6} - 289 x^{5} + 1773 x^{4} + 106 x^{3} + 51 x^{2} - 3 x + 1 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(32051921049190634765625=3^{8}\cdot 5^{10}\cdot 29^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.50$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{3} a^{10} - \frac{1}{3} a^{9} - \frac{1}{3} a^{6} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} + \frac{1}{3}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} - \frac{1}{3} a^{7} + \frac{1}{4} a^{6} - \frac{1}{12} a^{4} - \frac{5}{12} a^{3} - \frac{1}{6} a - \frac{1}{4}$, $\frac{1}{12} a^{12} + \frac{1}{6} a^{9} + \frac{5}{12} a^{8} - \frac{1}{12} a^{7} - \frac{1}{12} a^{6} - \frac{1}{12} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} + \frac{1}{6} a^{2} - \frac{5}{12} a + \frac{1}{12}$, $\frac{1}{12} a^{13} - \frac{1}{6} a^{10} - \frac{1}{4} a^{9} - \frac{1}{12} a^{8} - \frac{1}{12} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2} + \frac{1}{12} a - \frac{1}{3}$, $\frac{1}{92640} a^{14} - \frac{1091}{30880} a^{13} - \frac{79}{18528} a^{12} - \frac{19}{15440} a^{11} + \frac{10027}{92640} a^{10} - \frac{919}{11580} a^{9} - \frac{8243}{92640} a^{8} + \frac{13569}{30880} a^{7} - \frac{9581}{46320} a^{6} - \frac{1316}{2895} a^{5} + \frac{313}{92640} a^{4} - \frac{2299}{5790} a^{3} + \frac{177}{386} a^{2} - \frac{14219}{46320} a - \frac{22691}{92640}$, $\frac{1}{1054223097120} a^{15} - \frac{225077}{131777887140} a^{14} - \frac{6335593259}{263555774280} a^{13} + \frac{19813105811}{1054223097120} a^{12} - \frac{3142801391}{1054223097120} a^{11} - \frac{80299591}{351407699040} a^{10} + \frac{30348583917}{117135899680} a^{9} + \frac{30214298261}{65888943570} a^{8} + \frac{6424485617}{1054223097120} a^{7} - \frac{1635678983}{10335520560} a^{6} + \frac{258368192249}{1054223097120} a^{5} - \frac{284986025783}{1054223097120} a^{4} + \frac{1919915797}{7751640420} a^{3} + \frac{9849332281}{527111548560} a^{2} + \frac{314497393103}{1054223097120} a + \frac{131493980933}{1054223097120}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1419407}{22759566} a^{15} - \frac{63525059}{606921760} a^{14} + \frac{389030307}{606921760} a^{13} + \frac{173157959}{364153056} a^{12} + \frac{731201823}{303460880} a^{11} + \frac{2658284167}{606921760} a^{10} + \frac{1760747513}{227595660} a^{9} + \frac{13464998617}{606921760} a^{8} + \frac{7753851407}{606921760} a^{7} + \frac{2205326381}{53551920} a^{6} + \frac{2780342713}{37932610} a^{5} + \frac{56026693}{606921760} a^{4} + \frac{449411151}{4462660} a^{3} + \frac{634939229}{15173044} a^{2} + \frac{861930381}{303460880} a + \frac{1530486307}{1820765280} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 27482.5974391 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_2^2.D_4$ (as 16T92):
| A solvable group of order 64 |
| The 22 conjugacy class representatives for $C_2\times C_2^2.D_4$ |
| Character table for $C_2\times C_2^2.D_4$ is not computed |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/2.2.0.1}{2} }^{4}$ | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |