Normalized defining polynomial
\( x^{16} - 2 x^{15} + 12 x^{14} - 4 x^{13} + 83 x^{12} + 44 x^{11} + 534 x^{10} + 18 x^{9} + 2558 x^{8} - 914 x^{7} + 7356 x^{6} - 2518 x^{5} + 12178 x^{4} - 2118 x^{3} + 12298 x^{2} - 386 x + 7621 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31713911056000000000000=2^{16}\cdot 5^{12}\cdot 211^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 211$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{19} a^{13} + \frac{5}{19} a^{12} - \frac{1}{19} a^{11} + \frac{8}{19} a^{10} + \frac{9}{19} a^{8} + \frac{9}{19} a^{7} - \frac{9}{19} a^{6} + \frac{5}{19} a^{5} + \frac{3}{19} a^{4} - \frac{1}{19} a^{3} - \frac{6}{19} a^{2} + \frac{3}{19} a + \frac{3}{19}$, $\frac{1}{361} a^{14} + \frac{9}{361} a^{13} + \frac{9}{19} a^{12} - \frac{110}{361} a^{11} + \frac{108}{361} a^{10} + \frac{47}{361} a^{9} - \frac{50}{361} a^{8} + \frac{122}{361} a^{7} + \frac{178}{361} a^{6} + \frac{61}{361} a^{5} - \frac{65}{361} a^{4} + \frac{66}{361} a^{3} - \frac{21}{361} a^{2} + \frac{167}{361} a - \frac{121}{361}$, $\frac{1}{425552519985524764253201} a^{15} + \frac{46798909883400204388}{425552519985524764253201} a^{14} - \frac{5238350356004751241230}{425552519985524764253201} a^{13} - \frac{110450495400558006529278}{425552519985524764253201} a^{12} - \frac{80700054811414181867342}{425552519985524764253201} a^{11} + \frac{193941344487354352211952}{425552519985524764253201} a^{10} - \frac{144204866502929738693901}{425552519985524764253201} a^{9} + \frac{112411890342513446601608}{425552519985524764253201} a^{8} - \frac{162401138698541600801237}{425552519985524764253201} a^{7} + \frac{116538877339245406105959}{425552519985524764253201} a^{6} - \frac{152339669590430804937951}{425552519985524764253201} a^{5} - \frac{35147529834983203045421}{425552519985524764253201} a^{4} - \frac{58748434190548579073019}{425552519985524764253201} a^{3} + \frac{160440480386301146397103}{425552519985524764253201} a^{2} + \frac{3249049227744535157528}{425552519985524764253201} a - \frac{170396728178521181925239}{425552519985524764253201}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{28704915579745508904}{425552519985524764253201} a^{15} - \frac{417067178815543714632}{425552519985524764253201} a^{14} + \frac{579664893122859297608}{425552519985524764253201} a^{13} - \frac{4548234288592611093736}{425552519985524764253201} a^{12} - \frac{2687303102444181936864}{425552519985524764253201} a^{11} - \frac{30322976787747768427860}{425552519985524764253201} a^{10} - \frac{39104140816801814036908}{425552519985524764253201} a^{9} - \frac{190372643490836273157825}{425552519985524764253201} a^{8} - \frac{43588599916851587665160}{425552519985524764253201} a^{7} - \frac{775727968186984339040168}{425552519985524764253201} a^{6} + \frac{101126513155806603756080}{425552519985524764253201} a^{5} - \frac{1589187228503776158697862}{425552519985524764253201} a^{4} - \frac{154067579857752533146844}{425552519985524764253201} a^{3} - \frac{1712521165597581064774464}{425552519985524764253201} a^{2} - \frac{456641606952406708733928}{425552519985524764253201} a - \frac{1357263052733646621969005}{425552519985524764253201} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 93585.6905262 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 576 |
| The 28 conjugacy class representatives for t16n1027 |
| Character table for t16n1027 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.8.178084000000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 36 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.4.0.1}{4} }$ | ${\href{/LocalNumberField/11.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.12.0.1}{12} }{,}\,{\href{/LocalNumberField/17.4.0.1}{4} }$ | ${\href{/LocalNumberField/19.6.0.1}{6} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{5}$ | ${\href{/LocalNumberField/31.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/37.12.0.1}{12} }{,}\,{\href{/LocalNumberField/37.4.0.1}{4} }$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.12.0.1}{12} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }$ | ${\href{/LocalNumberField/47.12.0.1}{12} }{,}\,{\href{/LocalNumberField/47.4.0.1}{4} }$ | ${\href{/LocalNumberField/53.12.0.1}{12} }{,}\,{\href{/LocalNumberField/53.4.0.1}{4} }$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| 211 | Data not computed | ||||||