Properties

Label 16.0.31670569565...0625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{8}\cdot 5^{8}\cdot 7^{8}\cdot 11^{8}$
Root discriminant $33.99$
Ramified primes $3, 5, 7, 11$
Class number $24$ (GRH)
Class group $[2, 12]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1936, 968, -2640, 10890, 1565, -15094, 4680, -7916, 11490, -736, -1374, -458, 272, 36, -18, -2, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 2*x^15 - 18*x^14 + 36*x^13 + 272*x^12 - 458*x^11 - 1374*x^10 - 736*x^9 + 11490*x^8 - 7916*x^7 + 4680*x^6 - 15094*x^5 + 1565*x^4 + 10890*x^3 - 2640*x^2 + 968*x + 1936)
 
gp: K = bnfinit(x^16 - 2*x^15 - 18*x^14 + 36*x^13 + 272*x^12 - 458*x^11 - 1374*x^10 - 736*x^9 + 11490*x^8 - 7916*x^7 + 4680*x^6 - 15094*x^5 + 1565*x^4 + 10890*x^3 - 2640*x^2 + 968*x + 1936, 1)
 

Normalized defining polynomial

\( x^{16} - 2 x^{15} - 18 x^{14} + 36 x^{13} + 272 x^{12} - 458 x^{11} - 1374 x^{10} - 736 x^{9} + 11490 x^{8} - 7916 x^{7} + 4680 x^{6} - 15094 x^{5} + 1565 x^{4} + 10890 x^{3} - 2640 x^{2} + 968 x + 1936 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3167056956579818375390625=3^{8}\cdot 5^{8}\cdot 7^{8}\cdot 11^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $33.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 7, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(1155=3\cdot 5\cdot 7\cdot 11\)
Dirichlet character group:    $\lbrace$$\chi_{1155}(1,·)$, $\chi_{1155}(1154,·)$, $\chi_{1155}(769,·)$, $\chi_{1155}(76,·)$, $\chi_{1155}(461,·)$, $\chi_{1155}(386,·)$, $\chi_{1155}(274,·)$, $\chi_{1155}(659,·)$, $\chi_{1155}(736,·)$, $\chi_{1155}(1121,·)$, $\chi_{1155}(34,·)$, $\chi_{1155}(419,·)$, $\chi_{1155}(496,·)$, $\chi_{1155}(881,·)$, $\chi_{1155}(694,·)$, $\chi_{1155}(1079,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{8} a^{10} - \frac{1}{8} a^{9} - \frac{1}{4} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{4} - \frac{1}{8} a^{3} - \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{9} - \frac{1}{4} a^{7} + \frac{1}{8} a^{5} - \frac{1}{4} a^{4} + \frac{1}{8} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{336} a^{12} + \frac{1}{21} a^{11} + \frac{5}{84} a^{10} + \frac{17}{336} a^{9} + \frac{2}{21} a^{8} - \frac{1}{42} a^{7} + \frac{59}{336} a^{6} + \frac{2}{21} a^{5} - \frac{19}{84} a^{4} - \frac{11}{48} a^{3} - \frac{10}{21} a^{2} + \frac{5}{21} a - \frac{19}{42}$, $\frac{1}{1344} a^{13} + \frac{1}{1344} a^{12} - \frac{5}{672} a^{11} + \frac{53}{1344} a^{10} - \frac{13}{1344} a^{9} + \frac{25}{336} a^{8} - \frac{73}{1344} a^{7} + \frac{155}{1344} a^{6} + \frac{79}{672} a^{5} - \frac{197}{1344} a^{4} - \frac{559}{1344} a^{3} + \frac{29}{84} a^{2} + \frac{83}{168} a - \frac{17}{56}$, $\frac{1}{229965120} a^{14} - \frac{4693}{45993024} a^{13} + \frac{11567}{28745640} a^{12} + \frac{1861753}{229965120} a^{11} - \frac{2821061}{76655040} a^{10} - \frac{150223}{6763680} a^{9} - \frac{361173}{5110336} a^{8} + \frac{9895381}{229965120} a^{7} - \frac{690083}{6387920} a^{6} + \frac{53817647}{229965120} a^{5} + \frac{11631409}{76655040} a^{4} - \frac{3126373}{16426080} a^{3} - \frac{2697377}{28745640} a^{2} - \frac{257323}{522648} a + \frac{171331}{1306620}$, $\frac{1}{51392809687706625600} a^{15} - \frac{7710171587}{6424101210963328200} a^{14} - \frac{10219894502722909}{51392809687706625600} a^{13} - \frac{72924081336415543}{51392809687706625600} a^{12} + \frac{85483997836796161}{1511553226109018400} a^{11} + \frac{3135722450264770391}{51392809687706625600} a^{10} + \frac{3047234045031171617}{51392809687706625600} a^{9} - \frac{879511947421075151}{12848202421926656400} a^{8} - \frac{6438671662983248459}{51392809687706625600} a^{7} - \frac{2276112250192093457}{10278561937541325120} a^{6} + \frac{970016689080091049}{5139280968770662560} a^{5} - \frac{6374718258916033}{2234469986422027200} a^{4} - \frac{2616193088131594949}{8565468281284437600} a^{3} - \frac{15704037189318659}{62981384421209100} a^{2} - \frac{72835118815841951}{194669733665555400} a + \frac{10509644251269559}{292004600498333100}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{177963476429}{196663183204400} a^{15} - \frac{1344299276377}{589989549613200} a^{14} - \frac{35740271569657}{2359958198452800} a^{13} + \frac{95171695846811}{2359958198452800} a^{12} + \frac{266781406081951}{1179979099226400} a^{11} - \frac{416695822291119}{786652732817600} a^{10} - \frac{2317702591415159}{2359958198452800} a^{9} - \frac{9270851010779}{49165795801100} a^{8} + \frac{24968149675891793}{2359958198452800} a^{7} - \frac{1944471611832457}{157330546563520} a^{6} + \frac{2492461972104187}{235995819845280} a^{5} - \frac{699028316976503}{34202292731200} a^{4} + \frac{27858376853318663}{2359958198452800} a^{3} + \frac{259903076726459}{73748693701650} a^{2} - \frac{77111450405569}{26817706800600} a + \frac{88862163894889}{26817706800600} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 442809.445079 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{105}) \), \(\Q(\sqrt{33}) \), \(\Q(\sqrt{385}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-1155}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-35}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{77}) \), \(\Q(\sqrt{165}) \), \(\Q(\sqrt{-231}) \), \(\Q(\sqrt{-55}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{33}, \sqrt{105})\), \(\Q(\sqrt{-11}, \sqrt{105})\), \(\Q(\sqrt{-3}, \sqrt{-35})\), \(\Q(\sqrt{-3}, \sqrt{-11})\), \(\Q(\sqrt{33}, \sqrt{-35})\), \(\Q(\sqrt{-11}, \sqrt{-35})\), \(\Q(\sqrt{-3}, \sqrt{385})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{77}, \sqrt{105})\), \(\Q(\sqrt{-55}, \sqrt{105})\), \(\Q(\sqrt{-7}, \sqrt{-15})\), \(\Q(\sqrt{21}, \sqrt{33})\), \(\Q(\sqrt{5}, \sqrt{33})\), \(\Q(\sqrt{-7}, \sqrt{33})\), \(\Q(\sqrt{-15}, \sqrt{33})\), \(\Q(\sqrt{21}, \sqrt{165})\), \(\Q(\sqrt{5}, \sqrt{77})\), \(\Q(\sqrt{-15}, \sqrt{-231})\), \(\Q(\sqrt{-7}, \sqrt{-55})\), \(\Q(\sqrt{-11}, \sqrt{21})\), \(\Q(\sqrt{5}, \sqrt{-11})\), \(\Q(\sqrt{-7}, \sqrt{-11})\), \(\Q(\sqrt{-11}, \sqrt{-15})\), \(\Q(\sqrt{21}, \sqrt{-55})\), \(\Q(\sqrt{5}, \sqrt{-231})\), \(\Q(\sqrt{-15}, \sqrt{77})\), \(\Q(\sqrt{-7}, \sqrt{165})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{77})\), \(\Q(\sqrt{-3}, \sqrt{-55})\), \(\Q(\sqrt{-15}, \sqrt{21})\), \(\Q(\sqrt{5}, \sqrt{-7})\), \(\Q(\sqrt{-35}, \sqrt{-55})\), \(\Q(\sqrt{-35}, \sqrt{165})\), 8.0.1779622700625.5, 8.8.1779622700625.1, 8.0.1779622700625.4, 8.0.1779622700625.6, 8.0.1779622700625.2, 8.0.121550625.1, 8.0.1779622700625.7, 8.0.2847396321.1, 8.0.741200625.1, 8.0.1779622700625.1, 8.0.1779622700625.8, 8.0.1779622700625.3, 8.0.21970650625.1, 8.0.1779622700625.9, 8.0.1779622700625.10

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ R R R R ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$