Normalized defining polynomial
\( x^{16} + 880 x^{14} + 314600 x^{12} + 58564000 x^{10} + 6039412500 x^{8} + 338207100000 x^{6} + 9300695250000 x^{4} + 97435855000000 x^{2} + 257498605801250 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31633787341870088027340013568000000000000=2^{79}\cdot 5^{12}\cdot 11^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $339.83$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(3520=2^{6}\cdot 5\cdot 11\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{3520}(1,·)$, $\chi_{3520}(2243,·)$, $\chi_{3520}(969,·)$, $\chi_{3520}(2507,·)$, $\chi_{3520}(2641,·)$, $\chi_{3520}(1363,·)$, $\chi_{3520}(89,·)$, $\chi_{3520}(1627,·)$, $\chi_{3520}(1761,·)$, $\chi_{3520}(483,·)$, $\chi_{3520}(2729,·)$, $\chi_{3520}(747,·)$, $\chi_{3520}(881,·)$, $\chi_{3520}(3123,·)$, $\chi_{3520}(1849,·)$, $\chi_{3520}(3387,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{11} a^{2}$, $\frac{1}{11} a^{3}$, $\frac{1}{605} a^{4}$, $\frac{1}{605} a^{5}$, $\frac{1}{6655} a^{6}$, $\frac{1}{6655} a^{7}$, $\frac{1}{6222425} a^{8} + \frac{8}{113135} a^{6} - \frac{2}{10285} a^{4} - \frac{5}{187} a^{2} - \frac{1}{17}$, $\frac{1}{192895175} a^{9} - \frac{29}{701437} a^{7} + \frac{3}{63767} a^{5} - \frac{90}{5797} a^{3} + \frac{152}{527} a$, $\frac{1}{2121846925} a^{10} - \frac{12}{192895175} a^{8} - \frac{78}{3507185} a^{6} + \frac{232}{318835} a^{4} - \frac{251}{5797} a^{2} - \frac{6}{17}$, $\frac{1}{2121846925} a^{11} - \frac{237}{3507185} a^{7} - \frac{23}{63767} a^{5} + \frac{250}{5797} a^{3} + \frac{57}{527} a$, $\frac{1}{116701580875} a^{12} + \frac{1}{17535925} a^{8} - \frac{147}{3507185} a^{6} - \frac{246}{318835} a^{4} + \frac{247}{5797} a^{2} - \frac{8}{17}$, $\frac{1}{116701580875} a^{13} - \frac{133}{3507185} a^{7} + \frac{116}{318835} a^{5} + \frac{183}{5797} a^{3} + \frac{188}{527} a$, $\frac{1}{1283717389625} a^{14} - \frac{14}{192895175} a^{8} + \frac{54}{3507185} a^{6} + \frac{28}{63767} a^{4} + \frac{95}{5797} a^{2} - \frac{4}{17}$, $\frac{1}{1283717389625} a^{15} + \frac{12}{318835} a^{7} - \frac{177}{318835} a^{5} - \frac{111}{5797} a^{3} - \frac{104}{527} a$
Class group and class number
$C_{2}\times C_{90566276}$, which has order $181132552$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 320942.0117381313 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\zeta_{16})^+\), 8.8.1342177280000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | $16$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | $16$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 11 | Data not computed | ||||||