Normalized defining polynomial
\( x^{16} - 76 x^{14} - 240 x^{13} + 2382 x^{12} + 15960 x^{11} + 7772 x^{10} - 245400 x^{9} - 899765 x^{8} + 374400 x^{7} + 15990588 x^{6} + 77418000 x^{5} + 230936022 x^{4} + 481832280 x^{3} + 756378756 x^{2} + 777914280 x + 571570506 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3145149202160209033691136000000000000=2^{48}\cdot 3^{8}\cdot 5^{12}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $191.03$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4080=2^{4}\cdot 3\cdot 5\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4080}(1,·)$, $\chi_{4080}(3911,·)$, $\chi_{4080}(203,·)$, $\chi_{4080}(271,·)$, $\chi_{4080}(1427,·)$, $\chi_{4080}(409,·)$, $\chi_{4080}(3161,·)$, $\chi_{4080}(1123,·)$, $\chi_{4080}(679,·)$, $\chi_{4080}(2347,·)$, $\chi_{4080}(2413,·)$, $\chi_{4080}(239,·)$, $\chi_{4080}(3569,·)$, $\chi_{4080}(3637,·)$, $\chi_{4080}(3197,·)$, $\chi_{4080}(1973,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{4} + \frac{1}{3} a^{2}$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{5} + \frac{1}{3} a^{3}$, $\frac{1}{15} a^{8} + \frac{2}{15} a^{6} - \frac{1}{15} a^{4} - \frac{2}{15} a^{2} + \frac{2}{5}$, $\frac{1}{45} a^{9} - \frac{1}{15} a^{7} - \frac{2}{15} a^{5} - \frac{7}{45} a^{3} + \frac{2}{15} a$, $\frac{1}{45} a^{10} - \frac{2}{9} a^{4} + \frac{2}{5}$, $\frac{1}{45} a^{11} - \frac{2}{9} a^{5} + \frac{2}{5} a$, $\frac{1}{225} a^{12} - \frac{2}{225} a^{10} + \frac{2}{15} a^{7} - \frac{2}{45} a^{6} - \frac{7}{15} a^{5} + \frac{4}{45} a^{4} - \frac{1}{15} a^{3} + \frac{12}{25} a^{2} - \frac{2}{5} a + \frac{1}{25}$, $\frac{1}{47925} a^{13} - \frac{32}{15975} a^{12} - \frac{172}{47925} a^{11} + \frac{49}{15975} a^{10} - \frac{28}{3195} a^{9} - \frac{64}{3195} a^{8} - \frac{701}{9585} a^{7} - \frac{14}{213} a^{6} + \frac{1859}{9585} a^{5} - \frac{132}{355} a^{4} - \frac{5804}{15975} a^{3} + \frac{1058}{5325} a^{2} - \frac{3}{1775} a - \frac{557}{1775}$, $\frac{1}{411796473075} a^{14} - \frac{1431728}{137265491025} a^{13} - \frac{389872537}{411796473075} a^{12} - \frac{55057227}{5083907075} a^{11} - \frac{98826181}{9151032735} a^{10} - \frac{64013059}{27453098205} a^{9} - \frac{1375478954}{82359294615} a^{8} + \frac{704284274}{9151032735} a^{7} + \frac{4740635807}{82359294615} a^{6} + \frac{9147020933}{27453098205} a^{5} - \frac{29791939414}{137265491025} a^{4} - \frac{4484492648}{45755163675} a^{3} - \frac{2997003134}{45755163675} a^{2} - \frac{1039400956}{5083907075} a - \frac{5705096}{15642791}$, $\frac{1}{185106395228307125977718739128925} a^{15} - \frac{163091910582718727}{4113475449517936132838194202865} a^{14} - \frac{127344360041997592263224344}{185106395228307125977718739128925} a^{13} - \frac{74970660828344435281876127606}{61702131742769041992572913042975} a^{12} - \frac{73833055264918490844602363653}{6855792415863226888063657004775} a^{11} + \frac{70649247923198082110888277832}{61702131742769041992572913042975} a^{10} + \frac{320895964908737314238865582424}{37021279045661425195543747825785} a^{9} + \frac{21145153151421339038943876310}{2468085269710761679702916521719} a^{8} + \frac{3554843278486447017054470730572}{37021279045661425195543747825785} a^{7} + \frac{380243214556499296946271374114}{4113475449517936132838194202865} a^{6} - \frac{771103524087578063554555458199}{61702131742769041992572913042975} a^{5} - \frac{108064541414096540996518065713}{1371158483172645377612731400955} a^{4} + \frac{564992737184977107247409525287}{20567377247589680664190971014325} a^{3} - \frac{751289510084599223338369904749}{2285264138621075629354552334925} a^{2} - \frac{529251162443502231109775006233}{2285264138621075629354552334925} a + \frac{4125854947039858996117754277}{58596516374899375111655188075}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{24}\times C_{33456}$, which has order $12847104$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2699811.4861512356 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.24.13 | $x^{8} + 28 x^{4} + 36$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ |
| 2.8.24.13 | $x^{8} + 28 x^{4} + 36$ | $8$ | $1$ | $24$ | $C_4\times C_2$ | $[2, 3, 4]$ | |
| $3$ | 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 3.2.1.2 | $x^{2} + 3$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| $5$ | 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.2 | $x^{8} + 15 x^{4} + 100$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $17$ | 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 17.8.4.1 | $x^{8} + 6358 x^{4} - 4913 x^{2} + 10106041$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |