Normalized defining polynomial
\( x^{16} - 5 x^{15} + 93 x^{14} - 448 x^{13} + 3940 x^{12} - 16657 x^{11} + 93145 x^{10} - 335097 x^{9} + 1301332 x^{8} - 3803949 x^{7} + 10438655 x^{6} - 23104150 x^{5} + 43654491 x^{4} - 65201089 x^{3} + 76529340 x^{2} - 57494058 x + 24212557 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(31236842166910780816202985728=2^{8}\cdot 17^{15}\cdot 6529^{2}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $60.38$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17, 6529$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{11747654052342334537005833015594945318733507878490317} a^{15} + \frac{253565812996571888252585517722168514209712447022609}{903665696334025733615833308891918870671808298345409} a^{14} - \frac{5104999973230851057175079231957399629347438455633256}{11747654052342334537005833015594945318733507878490317} a^{13} - \frac{2249905750537766895253445696410921109236184073044610}{11747654052342334537005833015594945318733507878490317} a^{12} + \frac{5189290037854464183415644268482471755873220338381676}{11747654052342334537005833015594945318733507878490317} a^{11} + \frac{5030226816310103531839078245997276601436894843025752}{11747654052342334537005833015594945318733507878490317} a^{10} + \frac{508613118449978353928655753206783230077546931932557}{11747654052342334537005833015594945318733507878490317} a^{9} - \frac{3617344202415600375704204381290075686941677739528478}{11747654052342334537005833015594945318733507878490317} a^{8} + \frac{4897547935555920189780138942020286632819989787794871}{11747654052342334537005833015594945318733507878490317} a^{7} + \frac{4042845617900678436137085010078800523848278350245514}{11747654052342334537005833015594945318733507878490317} a^{6} - \frac{298004607540661260352484589672945611270900854509928}{903665696334025733615833308891918870671808298345409} a^{5} + \frac{2798987149026231617168436820652809497866799546527217}{11747654052342334537005833015594945318733507878490317} a^{4} - \frac{3222915073780229830497409731487170024066487172954776}{11747654052342334537005833015594945318733507878490317} a^{3} + \frac{712808952228392910748636601495545136477106556636633}{11747654052342334537005833015594945318733507878490317} a^{2} - \frac{5452362367275129296214048741842284810653717377635628}{11747654052342334537005833015594945318733507878490317} a - \frac{1516845847788721774378555652208749970408126748418863}{11747654052342334537005833015594945318733507878490317}$
Class group and class number
$C_{2}\times C_{4}\times C_{984}$, which has order $7872$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.01221338 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 32 conjugacy class representatives for t16n841 |
| Character table for t16n841 is not computed |
Intermediate fields
| \(\Q(\sqrt{17}) \), 4.4.4913.1, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.4 | $x^{8} + 2 x^{7} + 2 x^{6} + 8 x^{3} + 48$ | $2$ | $4$ | $8$ | $C_8$ | $[2]^{4}$ |
| 2.8.0.1 | $x^{8} + x^{4} + x^{3} + x + 1$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |
| 17 | Data not computed | ||||||
| 6529 | Data not computed | ||||||