Normalized defining polynomial
\( x^{16} - 8 x^{15} + 268 x^{14} - 1736 x^{13} + 31318 x^{12} - 165704 x^{11} + 2097020 x^{10} - 9006568 x^{9} + 88282889 x^{8} - 300845680 x^{7} + 2397008128 x^{6} - 6174142000 x^{5} + 41025028336 x^{4} - 72093668176 x^{3} + 404754448936 x^{2} - 369689067024 x + 1761875090942 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(312096931543105192096683948375015424=2^{62}\cdot 127^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $165.35$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 127$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4064=2^{5}\cdot 127\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4064}(1,·)$, $\chi_{4064}(2285,·)$, $\chi_{4064}(1017,·)$, $\chi_{4064}(3301,·)$, $\chi_{4064}(3809,·)$, $\chi_{4064}(3557,·)$, $\chi_{4064}(1777,·)$, $\chi_{4064}(2793,·)$, $\chi_{4064}(2541,·)$, $\chi_{4064}(253,·)$, $\chi_{4064}(2033,·)$, $\chi_{4064}(1269,·)$, $\chi_{4064}(3049,·)$, $\chi_{4064}(761,·)$, $\chi_{4064}(509,·)$, $\chi_{4064}(1525,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{31} a^{13} + \frac{9}{31} a^{12} - \frac{5}{31} a^{11} + \frac{6}{31} a^{10} - \frac{7}{31} a^{9} + \frac{11}{31} a^{8} - \frac{9}{31} a^{7} + \frac{5}{31} a^{6} + \frac{9}{31} a^{5} + \frac{11}{31} a^{4} + \frac{8}{31} a^{3} - \frac{7}{31} a^{2} - \frac{6}{31} a - \frac{13}{31}$, $\frac{1}{25402264508938058810557889} a^{14} - \frac{7}{25402264508938058810557889} a^{13} - \frac{1859712800597630566972985}{25402264508938058810557889} a^{12} + \frac{11158276803585783401838001}{25402264508938058810557889} a^{11} + \frac{3458380099506818726121148}{25402264508938058810557889} a^{10} + \frac{7435218014286519238668529}{25402264508938058810557889} a^{9} + \frac{871515194586054781969860}{25402264508938058810557889} a^{8} - \frac{1563117551433893571345984}{25402264508938058810557889} a^{7} + \frac{1265611736838201482292073}{25402264508938058810557889} a^{6} - \frac{931127178653007728023153}{25402264508938058810557889} a^{5} + \frac{3637030070341573679636163}{25402264508938058810557889} a^{4} + \frac{9318292477786691307983843}{25402264508938058810557889} a^{3} + \frac{7662285850962709818398793}{25402264508938058810557889} a^{2} + \frac{10351876300666297050549496}{25402264508938058810557889} a - \frac{5980863344086893751419902}{25402264508938058810557889}$, $\frac{1}{271218123796622501442033410127103} a^{15} + \frac{5338456}{271218123796622501442033410127103} a^{14} + \frac{2742910079125709439773297262424}{271218123796622501442033410127103} a^{13} - \frac{27756924420790340326796261014279}{271218123796622501442033410127103} a^{12} + \frac{103175632060409930335018997358425}{271218123796622501442033410127103} a^{11} - \frac{25261175830806316175397807249394}{271218123796622501442033410127103} a^{10} + \frac{85238586839073869435408762424886}{271218123796622501442033410127103} a^{9} - \frac{98749695621142527118075480729583}{271218123796622501442033410127103} a^{8} + \frac{80776501067351544498353479154876}{271218123796622501442033410127103} a^{7} + \frac{105336516611195194981907648737881}{271218123796622501442033410127103} a^{6} - \frac{125202997194842409085319805185375}{271218123796622501442033410127103} a^{5} + \frac{2359245927524588544040900648101}{8748971735374919401355916455713} a^{4} + \frac{100758252224929951063072513124232}{271218123796622501442033410127103} a^{3} + \frac{29847558615366908910393715237279}{271218123796622501442033410127103} a^{2} - \frac{118198678700158649949599713241123}{271218123796622501442033410127103} a + \frac{10758886495927872163679849408056}{271218123796622501442033410127103}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{40}\times C_{18080}$, which has order $23142400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ |
| 2.8.31.6 | $x^{8} + 16 x^{7} + 28 x^{4} + 16 x^{3} + 2$ | $8$ | $1$ | $31$ | $C_8$ | $[3, 4, 5]$ | |
| $127$ | 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 127.2.1.2 | $x^{2} + 1143$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |