Properties

Label 16.0.311829406284765625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3.118\times 10^{17}$
Root discriminant \(12.40\)
Ramified primes $5,61,97,151$
Class number $1$
Class group trivial
Galois group $C_2^6.S_4^2:C_2^2$ (as 16T1884)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / PariGP / SageMath

Normalized defining polynomial

sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 2*x^14 - 3*x^13 + 3*x^12 - x^11 + 6*x^10 + 13*x^9 + 8*x^8 + 19*x^7 + 4*x^5 + 12*x^4 - 17*x^3 + 12*x^2 - x + 1)
 
gp: K = bnfinit(y^16 + 2*y^14 - 3*y^13 + 3*y^12 - y^11 + 6*y^10 + 13*y^9 + 8*y^8 + 19*y^7 + 4*y^5 + 12*y^4 - 17*y^3 + 12*y^2 - y + 1, 1)
 
magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(x^16 + 2*x^14 - 3*x^13 + 3*x^12 - x^11 + 6*x^10 + 13*x^9 + 8*x^8 + 19*x^7 + 4*x^5 + 12*x^4 - 17*x^3 + 12*x^2 - x + 1);
 
oscar: Qx, x = polynomial_ring(QQ); K, a = number_field(x^16 + 2*x^14 - 3*x^13 + 3*x^12 - x^11 + 6*x^10 + 13*x^9 + 8*x^8 + 19*x^7 + 4*x^5 + 12*x^4 - 17*x^3 + 12*x^2 - x + 1)
 

\( x^{16} + 2 x^{14} - 3 x^{13} + 3 x^{12} - x^{11} + 6 x^{10} + 13 x^{9} + 8 x^{8} + 19 x^{7} + 4 x^{5} + \cdots + 1 \) Copy content Toggle raw display

sage: K.defining_polynomial()
 
gp: K.pol
 
magma: DefiningPolynomial(K);
 
oscar: defining_polynomial(K)
 

Invariants

Degree:  $16$
sage: K.degree()
 
gp: poldegree(K.pol)
 
magma: Degree(K);
 
oscar: degree(K)
 
Signature:  $[0, 8]$
sage: K.signature()
 
gp: K.sign
 
magma: Signature(K);
 
oscar: signature(K)
 
Discriminant:   \(311829406284765625\) \(\medspace = 5^{8}\cdot 61^{2}\cdot 97^{2}\cdot 151^{2}\) Copy content Toggle raw display
sage: K.disc()
 
gp: K.disc
 
magma: OK := Integers(K); Discriminant(OK);
 
oscar: OK = ring_of_integers(K); discriminant(OK)
 
Root discriminant:  \(12.40\)
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
magma: Abs(Discriminant(OK))^(1/Degree(K));
 
oscar: (1.0 * dK)^(1/degree(K))
 
Galois root discriminant:  $5^{1/2}61^{1/2}97^{1/2}151^{1/2}\approx 2113.6071063468726$
Ramified primes:   \(5\), \(61\), \(97\), \(151\) Copy content Toggle raw display
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
magma: PrimeDivisors(Discriminant(OK));
 
oscar: prime_divisors(discriminant((OK)))
 
Discriminant root field:  \(\Q\)
$\card{ \Aut(K/\Q) }$:  $2$
sage: K.automorphisms()
 
magma: Automorphisms(K);
 
oscar: automorphisms(K)
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{13204342879}a^{15}+\frac{426218564}{13204342879}a^{14}+\frac{4785173784}{13204342879}a^{13}-\frac{1740421044}{13204342879}a^{12}-\frac{46594851}{145102669}a^{11}+\frac{6384881411}{13204342879}a^{10}-\frac{1295086740}{13204342879}a^{9}-\frac{727618934}{1886334697}a^{8}-\frac{1860190520}{13204342879}a^{7}-\frac{278001824}{1886334697}a^{6}+\frac{445311679}{1886334697}a^{5}+\frac{5467659082}{13204342879}a^{4}+\frac{4741944437}{13204342879}a^{3}+\frac{3251137528}{13204342879}a^{2}+\frac{492357784}{13204342879}a+\frac{1406077067}{13204342879}$ Copy content Toggle raw display

sage: K.integral_basis()
 
gp: K.zk
 
magma: IntegralBasis(K);
 
oscar: basis(OK)
 

Monogenic:  Not computed
Index:  $1$
Inessential primes:  None

Class group and class number

Trivial group, which has order $1$

sage: K.class_group().invariants()
 
gp: K.clgp
 
magma: ClassGroup(K);
 
oscar: class_group(K)
 

Unit group

sage: UK = K.unit_group()
 
magma: UK, fUK := UnitGroup(K);
 
oscar: UK, fUK = unit_group(OK)
 
Rank:  $7$
sage: UK.rank()
 
gp: K.fu
 
magma: UnitRank(K);
 
oscar: rank(UK)
 
Torsion generator:   \( -1 \)  (order $2$) Copy content Toggle raw display
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
oscar: torsion_units_generator(OK)
 
Fundamental units:   $\frac{2046541278}{13204342879}a^{15}-\frac{1464904067}{13204342879}a^{14}+\frac{3534843860}{13204342879}a^{13}-\frac{9242507712}{13204342879}a^{12}+\frac{102299823}{145102669}a^{11}-\frac{5282146287}{13204342879}a^{10}+\frac{13010375328}{13204342879}a^{9}+\frac{2568156611}{1886334697}a^{8}-\frac{4941030873}{13204342879}a^{7}+\frac{2395017490}{1886334697}a^{6}-\frac{5180744906}{1886334697}a^{5}-\frac{4498096170}{13204342879}a^{4}+\frac{15880118116}{13204342879}a^{3}-\frac{44921199124}{13204342879}a^{2}+\frac{45876334808}{13204342879}a-\frac{9653123990}{13204342879}$, $\frac{105526350}{1886334697}a^{15}+\frac{202237044}{1886334697}a^{14}+\frac{116447195}{1886334697}a^{13}+\frac{78278890}{1886334697}a^{12}-\frac{30756953}{145102669}a^{11}+\frac{712064957}{1886334697}a^{10}+\frac{292982983}{1886334697}a^{9}+\frac{2280552153}{1886334697}a^{8}+\frac{3034772660}{1886334697}a^{7}+\frac{2376990318}{1886334697}a^{6}+\frac{3578997518}{1886334697}a^{5}-\frac{735022625}{1886334697}a^{4}+\frac{1292490665}{1886334697}a^{3}-\frac{193581348}{1886334697}a^{2}-\frac{3925546562}{1886334697}a+\frac{2646519404}{1886334697}$, $\frac{195079170}{1015718683}a^{15}+\frac{3495126}{1015718683}a^{14}+\frac{419954382}{1015718683}a^{13}-\frac{515228772}{1015718683}a^{12}+\frac{91566464}{145102669}a^{11}-\frac{163839703}{1015718683}a^{10}+\frac{1048759078}{1015718683}a^{9}+\frac{371129408}{145102669}a^{8}+\frac{1688783256}{1015718683}a^{7}+\frac{646417164}{145102669}a^{6}+\frac{179725552}{145102669}a^{5}+\frac{1865179704}{1015718683}a^{4}+\frac{2869494195}{1015718683}a^{3}-\frac{4059747575}{1015718683}a^{2}+\frac{2242374230}{1015718683}a-\frac{641468012}{1015718683}$, $\frac{420209068}{13204342879}a^{15}-\frac{1947327300}{13204342879}a^{14}-\frac{511073310}{13204342879}a^{13}-\frac{5297610488}{13204342879}a^{12}+\frac{55571216}{145102669}a^{11}-\frac{1613966178}{13204342879}a^{10}+\frac{2141010462}{13204342879}a^{9}-\frac{995729181}{1886334697}a^{8}-\frac{30751224904}{13204342879}a^{7}-\frac{3665782031}{1886334697}a^{6}-\frac{5869012549}{1886334697}a^{5}-\frac{12164137220}{13204342879}a^{4}+\frac{8826562942}{13204342879}a^{3}-\frac{23580124556}{13204342879}a^{2}+\frac{21629229403}{13204342879}a+\frac{1015701600}{13204342879}$, $\frac{970264962}{13204342879}a^{15}-\frac{807557614}{13204342879}a^{14}+\frac{3068616906}{13204342879}a^{13}-\frac{3260492084}{13204342879}a^{12}+\frac{87237387}{145102669}a^{11}-\frac{4490375010}{13204342879}a^{10}+\frac{6903779380}{13204342879}a^{9}+\frac{1342451670}{1886334697}a^{8}+\frac{4456310133}{13204342879}a^{7}+\frac{4813504296}{1886334697}a^{6}+\frac{1651036415}{1886334697}a^{5}+\frac{38274820228}{13204342879}a^{4}+\frac{34016778325}{13204342879}a^{3}-\frac{11607661733}{13204342879}a^{2}+\frac{41571598702}{13204342879}a-\frac{6904558914}{13204342879}$, $a$, $\frac{94876911}{13204342879}a^{15}+\frac{696238304}{13204342879}a^{14}+\frac{2410191081}{13204342879}a^{13}+\frac{1805731822}{13204342879}a^{12}+\frac{12296654}{145102669}a^{11}-\frac{4803799493}{13204342879}a^{10}+\frac{1961532858}{13204342879}a^{9}+\frac{1221443551}{1886334697}a^{8}+\frac{24081230127}{13204342879}a^{7}+\frac{5423856083}{1886334697}a^{6}+\frac{3987244241}{1886334697}a^{5}+\frac{22073190046}{13204342879}a^{4}-\frac{10738698330}{13204342879}a^{3}-\frac{419831336}{13204342879}a^{2}+\frac{12128086312}{13204342879}a-\frac{6417866824}{13204342879}$ Copy content Toggle raw display
sage: UK.fundamental_units()
 
gp: K.fu
 
magma: [K|fUK(g): g in Generators(UK)];
 
oscar: [K(fUK(a)) for a in gens(UK)]
 
Regulator:  \( 90.9680140734 \)
sage: K.regulator()
 
gp: K.reg
 
magma: Regulator(K);
 
oscar: regulator(K)
 

Class number formula

\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 90.9680140734 \cdot 1}{2\cdot\sqrt{311829406284765625}}\cr\approx \mathstrut & 0.197851401508 \end{aligned}\]

# self-contained SageMath code snippet to compute the analytic class number formula
 
x = polygen(QQ); K.<a> = NumberField(x^16 + 2*x^14 - 3*x^13 + 3*x^12 - x^11 + 6*x^10 + 13*x^9 + 8*x^8 + 19*x^7 + 4*x^5 + 12*x^4 - 17*x^3 + 12*x^2 - x + 1)
 
DK = K.disc(); r1,r2 = K.signature(); RK = K.regulator(); RR = RK.parent()
 
hK = K.class_number(); wK = K.unit_group().torsion_generator().order();
 
2^r1 * (2*RR(pi))^r2 * RK * hK / (wK * RR(sqrt(abs(DK))))
 
# self-contained Pari/GP code snippet to compute the analytic class number formula
 
K = bnfinit(x^16 + 2*x^14 - 3*x^13 + 3*x^12 - x^11 + 6*x^10 + 13*x^9 + 8*x^8 + 19*x^7 + 4*x^5 + 12*x^4 - 17*x^3 + 12*x^2 - x + 1, 1);
 
[polcoeff (lfunrootres (lfuncreate (K))[1][1][2], -1), 2^K.r1 * (2*Pi)^K.r2 * K.reg * K.no / (K.tu[1] * sqrt (abs (K.disc)))]
 
/* self-contained Magma code snippet to compute the analytic class number formula */
 
Qx<x> := PolynomialRing(QQ); K<a> := NumberField(x^16 + 2*x^14 - 3*x^13 + 3*x^12 - x^11 + 6*x^10 + 13*x^9 + 8*x^8 + 19*x^7 + 4*x^5 + 12*x^4 - 17*x^3 + 12*x^2 - x + 1);
 
OK := Integers(K); DK := Discriminant(OK);
 
UK, fUK := UnitGroup(OK); clK, fclK := ClassGroup(OK);
 
r1,r2 := Signature(K); RK := Regulator(K); RR := Parent(RK);
 
hK := #clK; wK := #TorsionSubgroup(UK);
 
2^r1 * (2*Pi(RR))^r2 * RK * hK / (wK * Sqrt(RR!Abs(DK)));
 
# self-contained Oscar code snippet to compute the analytic class number formula
 
Qx, x = PolynomialRing(QQ); K, a = NumberField(x^16 + 2*x^14 - 3*x^13 + 3*x^12 - x^11 + 6*x^10 + 13*x^9 + 8*x^8 + 19*x^7 + 4*x^5 + 12*x^4 - 17*x^3 + 12*x^2 - x + 1);
 
OK = ring_of_integers(K); DK = discriminant(OK);
 
UK, fUK = unit_group(OK); clK, fclK = class_group(OK);
 
r1,r2 = signature(K); RK = regulator(K); RR = parent(RK);
 
hK = order(clK); wK = torsion_units_order(K);
 
2^r1 * (2*pi)^r2 * RK * hK / (wK * sqrt(RR(abs(DK))))
 

Galois group

$C_2^6.S_4^2:C_2^2$ (as 16T1884):

sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
magma: G = GaloisGroup(K);
 
oscar: G, Gtx = galois_group(K); G, transitive_group_identification(G)
 
A solvable group of order 147456
The 136 conjugacy class representatives for $C_2^6.S_4^2:C_2^2$
Character table for $C_2^6.S_4^2:C_2^2$

Intermediate fields

\(\Q(\sqrt{5}) \), 8.2.5756875.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

sage: K.subfields()[1:-1]
 
gp: L = nfsubfields(K); L[2..length(b)]
 
magma: L := Subfields(K); L[2..#L];
 
oscar: subfields(K)[2:end-1]
 

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed
Minimal sibling: This field is its own minimal sibling

Frobenius cycle types

$p$ $2$ $3$ $5$ $7$ $11$ $13$ $17$ $19$ $23$ $29$ $31$ $37$ $41$ $43$ $47$ $53$ $59$
Cycle type ${\href{/padicField/2.8.0.1}{8} }^{2}$ ${\href{/padicField/3.8.0.1}{8} }^{2}$ R ${\href{/padicField/7.6.0.1}{6} }^{2}{,}\,{\href{/padicField/7.2.0.1}{2} }^{2}$ ${\href{/padicField/11.6.0.1}{6} }{,}\,{\href{/padicField/11.4.0.1}{4} }^{2}{,}\,{\href{/padicField/11.2.0.1}{2} }$ ${\href{/padicField/13.8.0.1}{8} }{,}\,{\href{/padicField/13.4.0.1}{4} }{,}\,{\href{/padicField/13.2.0.1}{2} }^{2}$ ${\href{/padicField/17.8.0.1}{8} }^{2}$ ${\href{/padicField/19.6.0.1}{6} }{,}\,{\href{/padicField/19.3.0.1}{3} }^{2}{,}\,{\href{/padicField/19.2.0.1}{2} }{,}\,{\href{/padicField/19.1.0.1}{1} }^{2}$ ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.4.0.1}{4} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{2}{,}\,{\href{/padicField/29.1.0.1}{1} }^{2}$ ${\href{/padicField/31.4.0.1}{4} }^{2}{,}\,{\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{2}$ ${\href{/padicField/37.8.0.1}{8} }^{2}$ ${\href{/padicField/41.8.0.1}{8} }{,}\,{\href{/padicField/41.6.0.1}{6} }{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ ${\href{/padicField/43.8.0.1}{8} }^{2}$ ${\href{/padicField/47.6.0.1}{6} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}$ ${\href{/padicField/53.8.0.1}{8} }^{2}$ ${\href{/padicField/59.8.0.1}{8} }{,}\,{\href{/padicField/59.6.0.1}{6} }{,}\,{\href{/padicField/59.1.0.1}{1} }^{2}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Sage:
 
p = 7; [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
\\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Pari:
 
p = 7; pfac = idealprimedec(K, p); vector(length(pfac), j, [pfac[j][3], pfac[j][4]])
 
// to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7 in Magma:
 
p := 7; [<pr[2], Valuation(Norm(pr[1]), p)> : pr in Factorization(p*Integers(K))];
 
# to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$ for $p=7$ in Oscar:
 
p = 7; pfac = factor(ideal(ring_of_integers(K), p)); [(e, valuation(norm(pr),p)) for (pr,e) in pfac]
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
\(5\) Copy content Toggle raw display 5.16.8.1$x^{16} + 160 x^{15} + 11240 x^{14} + 453600 x^{13} + 11536702 x^{12} + 190484240 x^{11} + 2020220586 x^{10} + 13041178608 x^{9} + 45239382035 x^{8} + 65384309200 x^{7} + 52374358166 x^{6} + 35488260768 x^{5} + 46408266743 x^{4} + 66345171264 x^{3} + 136057926318 x^{2} + 159173865296 x + 74196697609$$2$$8$$8$$C_8\times C_2$$[\ ]_{2}^{8}$
\(61\) Copy content Toggle raw display 61.2.1.1$x^{2} + 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.2.0.1$x^{2} + 60 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.0.1$x^{2} + 60 x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
61.2.1.1$x^{2} + 61$$2$$1$$1$$C_2$$[\ ]_{2}$
61.4.0.1$x^{4} + 3 x^{2} + 40 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
61.4.0.1$x^{4} + 3 x^{2} + 40 x + 2$$1$$4$$0$$C_4$$[\ ]^{4}$
\(97\) Copy content Toggle raw display 97.4.2.1$x^{4} + 10474 x^{3} + 27919909 x^{2} + 2585716380 x + 183392493$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
97.6.0.1$x^{6} + 92 x^{3} + 58 x^{2} + 88 x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
97.6.0.1$x^{6} + 92 x^{3} + 58 x^{2} + 88 x + 5$$1$$6$$0$$C_6$$[\ ]^{6}$
\(151\) Copy content Toggle raw display 151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.2.0.1$x^{2} + 149 x + 6$$1$$2$$0$$C_2$$[\ ]^{2}$
151.4.2.1$x^{4} + 298 x^{3} + 22515 x^{2} + 46786 x + 3373376$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$