Normalized defining polynomial
\( x^{16} + 2x^{14} + 4x^{12} + 6x^{10} + 8x^{8} + 7x^{6} + 5x^{4} + 3x^{2} + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(3100665090835456\)
\(\medspace = 2^{10}\cdot 1740113^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.29\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $2^{15/8}1740113^{1/2}\approx 4838.602746804308$ | ||
Ramified primes: |
\(2\), \(1740113\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $\frac{1}{2}a^{13}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{9}-\frac{1}{2}a^{6}-\frac{1}{2}a^{5}-\frac{1}{2}a^{4}-\frac{1}{2}a^{3}-\frac{1}{2}$, $\frac{1}{2}a^{14}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{9}-\frac{1}{2}a^{7}-\frac{1}{2}a^{3}-\frac{1}{2}a-\frac{1}{2}$, $\frac{1}{2}a^{15}-\frac{1}{2}a^{12}-\frac{1}{2}a^{11}-\frac{1}{2}a^{10}-\frac{1}{2}a^{8}-\frac{1}{2}a^{4}-\frac{1}{2}a^{2}-\frac{1}{2}a$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a$, $a^{15}+a^{13}+2a^{11}+2a^{9}+3a^{7}$, $a^{12}+a^{10}+3a^{8}+3a^{6}+4a^{4}+2a^{2}+1$, $\frac{1}{2}a^{14}+\frac{1}{2}a^{13}+\frac{1}{2}a^{12}+a^{11}+\frac{3}{2}a^{10}+2a^{9}+2a^{8}+\frac{5}{2}a^{7}+\frac{5}{2}a^{6}+\frac{7}{2}a^{5}+\frac{3}{2}a^{4}+2a^{3}+2a^{2}+\frac{3}{2}a+1$, $\frac{1}{2}a^{15}+\frac{1}{2}a^{14}+\frac{1}{2}a^{13}+a^{12}+\frac{1}{2}a^{11}+2a^{10}+a^{9}+\frac{5}{2}a^{8}+\frac{1}{2}a^{7}+\frac{7}{2}a^{6}-\frac{1}{2}a^{5}+2a^{4}-a^{3}+\frac{3}{2}a^{2}$, $\frac{3}{2}a^{15}+a^{14}+\frac{3}{2}a^{13}+2a^{12}+4a^{11}+\frac{7}{2}a^{10}+\frac{9}{2}a^{9}+\frac{11}{2}a^{8}+6a^{7}+\frac{13}{2}a^{6}+\frac{5}{2}a^{5}+5a^{4}+\frac{5}{2}a^{3}+\frac{5}{2}a^{2}+\frac{1}{2}a+\frac{3}{2}$, $\frac{1}{2}a^{15}-a^{14}+\frac{1}{2}a^{13}-a^{12}+2a^{11}-\frac{5}{2}a^{10}+\frac{5}{2}a^{9}-\frac{5}{2}a^{8}+4a^{7}-\frac{7}{2}a^{6}+\frac{7}{2}a^{5}-a^{4}+\frac{7}{2}a^{3}-\frac{1}{2}a^{2}+\frac{3}{2}a-\frac{1}{2}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 7.31402076949 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 7.31402076949 \cdot 1}{2\cdot\sqrt{3100665090835456}}\cr\approx \mathstrut & 0.159528290228 \end{aligned}\]
Galois group
$C_2^7.S_8$ (as 16T1945):
A non-solvable group of order 5160960 |
The 100 conjugacy class representatives for $C_2^7.S_8$ |
Character table for $C_2^7.S_8$ |
Intermediate fields
8.0.1740113.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 sibling: | data not computed |
Degree 32 sibling: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | R | ${\href{/padicField/3.8.0.1}{8} }^{2}$ | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | ${\href{/padicField/7.10.0.1}{10} }{,}\,{\href{/padicField/7.6.0.1}{6} }$ | ${\href{/padicField/11.10.0.1}{10} }{,}\,{\href{/padicField/11.6.0.1}{6} }$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.5.0.1}{5} }^{2}{,}\,{\href{/padicField/17.4.0.1}{4} }{,}\,{\href{/padicField/17.2.0.1}{2} }$ | ${\href{/padicField/19.14.0.1}{14} }{,}\,{\href{/padicField/19.2.0.1}{2} }$ | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.8.0.1}{8} }^{2}$ | ${\href{/padicField/37.8.0.1}{8} }{,}\,{\href{/padicField/37.2.0.1}{2} }^{3}{,}\,{\href{/padicField/37.1.0.1}{1} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.2.0.1}{2} }^{4}$ | ${\href{/padicField/43.10.0.1}{10} }{,}\,{\href{/padicField/43.2.0.1}{2} }^{3}$ | ${\href{/padicField/47.8.0.1}{8} }^{2}$ | ${\href{/padicField/53.10.0.1}{10} }{,}\,{\href{/padicField/53.6.0.1}{6} }$ | ${\href{/padicField/59.6.0.1}{6} }^{2}{,}\,{\href{/padicField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(2\)
| 2.6.0.1 | $x^{6} + x^{4} + x^{3} + x + 1$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ |
2.10.10.4 | $x^{10} - 2 x^{8} + 16 x^{7} - 8 x^{6} - 432 x^{5} - 176 x^{4} - 960 x^{3} - 1776 x^{2} - 448 x - 32$ | $2$ | $5$ | $10$ | $C_2 \times (C_2^4 : C_5)$ | $[2, 2, 2, 2]^{10}$ | |
\(1740113\)
| Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $4$ | $2$ | $2$ | $2$ |