Normalized defining polynomial
\( x^{16} - 4 x^{14} - 4 x^{12} + 44 x^{10} + 102 x^{8} - 684 x^{6} + 2540 x^{4} - 3804 x^{2} + 7569 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3095345822428295086473216=2^{26}\cdot 3^{2}\cdot 8461^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.94$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 8461$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{6} - \frac{1}{4} a^{4} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{4} a^{7} - \frac{1}{4} a^{5} - \frac{1}{4} a^{3} + \frac{1}{4} a$, $\frac{1}{8} a^{8} - \frac{1}{4} a^{4} - \frac{1}{2} a^{2} - \frac{3}{8}$, $\frac{1}{16} a^{9} - \frac{1}{16} a^{8} - \frac{1}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{4} a^{5} - \frac{1}{8} a^{3} - \frac{1}{8} a^{2} + \frac{7}{16} a + \frac{5}{16}$, $\frac{1}{16} a^{10} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{4} + \frac{1}{16} a^{2} + \frac{3}{16}$, $\frac{1}{16} a^{11} - \frac{1}{16} a^{8} - \frac{1}{8} a^{6} - \frac{1}{8} a^{5} + \frac{3}{16} a^{3} + \frac{3}{8} a^{2} - \frac{1}{8} a - \frac{3}{16}$, $\frac{1}{96} a^{12} + \frac{5}{96} a^{8} + \frac{1}{24} a^{6} - \frac{1}{4} a^{5} - \frac{17}{96} a^{4} - \frac{5}{24} a^{2} + \frac{1}{4} a + \frac{9}{32}$, $\frac{1}{96} a^{13} - \frac{1}{96} a^{9} - \frac{1}{16} a^{8} - \frac{1}{12} a^{7} - \frac{1}{8} a^{6} - \frac{17}{96} a^{5} - \frac{1}{4} a^{4} + \frac{1}{6} a^{3} - \frac{1}{8} a^{2} + \frac{3}{32} a - \frac{7}{16}$, $\frac{1}{35196384} a^{14} + \frac{53269}{11732128} a^{12} - \frac{459667}{35196384} a^{10} - \frac{589937}{35196384} a^{8} + \frac{3891835}{35196384} a^{6} - \frac{6058259}{35196384} a^{4} + \frac{435005}{11732128} a^{2} - \frac{4541225}{11732128}$, $\frac{1}{2041390272} a^{15} - \frac{1}{70392768} a^{14} + \frac{786527}{680463424} a^{13} - \frac{53269}{23464256} a^{12} - \frac{4859215}{2041390272} a^{11} + \frac{459667}{70392768} a^{10} - \frac{7189259}{2041390272} a^{9} - \frac{3809611}{70392768} a^{8} - \frac{224884661}{2041390272} a^{7} - \frac{3891835}{70392768} a^{6} + \frac{431696767}{2041390272} a^{5} - \frac{2740837}{70392768} a^{4} - \frac{68491247}{680463424} a^{3} + \frac{5431059}{23464256} a^{2} + \frac{79783445}{680463424} a - \frac{8657419}{23464256}$
Class group and class number
$C_{12}$, which has order $12$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{233}{1099887} a^{14} + \frac{11629}{17598192} a^{12} + \frac{7315}{8799096} a^{10} - \frac{40745}{5866064} a^{8} - \frac{129523}{4399548} a^{6} + \frac{1943039}{17598192} a^{4} - \frac{5830609}{8799096} a^{2} + \frac{3525757}{5866064} \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 486888.507154 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 78 conjugacy class representatives for t16n1665 are not computed |
| Character table for t16n1665 is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), 4.4.33844.1, 8.0.73306645504.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.6.0.1}{6} }{,}\,{\href{/LocalNumberField/5.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }{,}\,{\href{/LocalNumberField/29.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.6.0.1}{6} }{,}\,{\href{/LocalNumberField/37.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/37.2.0.1}{2} }{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.6.8 | $x^{4} + 2 x^{3} + 2$ | $4$ | $1$ | $6$ | $D_{4}$ | $[2, 2]^{2}$ |
| 2.12.20.68 | $x^{12} + 2 x^{9} + 2$ | $12$ | $1$ | $20$ | $(C_6\times C_2):C_2$ | $[2, 2]_{3}^{2}$ | |
| $3$ | 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.2.0.1 | $x^{2} - x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 3.4.2.2 | $x^{4} - 3 x^{2} + 18$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 8461 | Data not computed | ||||||