Properties

Label 16.0.30826882333...2464.1
Degree $16$
Signature $[0, 8]$
Discriminant $2^{28}\cdot 3^{14}\cdot 7^{4}$
Root discriminant $14.31$
Ramified primes $2, 3, 7$
Class number $2$
Class group $[2]$
Galois group $D_4^2.C_2$ (as 16T376)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![1, -6, 16, -18, -14, 66, -56, -42, 118, -42, -56, 66, -14, -18, 16, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 16*x^14 - 18*x^13 - 14*x^12 + 66*x^11 - 56*x^10 - 42*x^9 + 118*x^8 - 42*x^7 - 56*x^6 + 66*x^5 - 14*x^4 - 18*x^3 + 16*x^2 - 6*x + 1)
 
gp: K = bnfinit(x^16 - 6*x^15 + 16*x^14 - 18*x^13 - 14*x^12 + 66*x^11 - 56*x^10 - 42*x^9 + 118*x^8 - 42*x^7 - 56*x^6 + 66*x^5 - 14*x^4 - 18*x^3 + 16*x^2 - 6*x + 1, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 16 x^{14} - 18 x^{13} - 14 x^{12} + 66 x^{11} - 56 x^{10} - 42 x^{9} + 118 x^{8} - 42 x^{7} - 56 x^{6} + 66 x^{5} - 14 x^{4} - 18 x^{3} + 16 x^{2} - 6 x + 1 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(3082688233381822464=2^{28}\cdot 3^{14}\cdot 7^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $14.31$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{26} a^{14} - \frac{1}{26} a^{13} - \frac{3}{26} a^{12} - \frac{3}{13} a^{11} - \frac{1}{13} a^{10} - \frac{3}{26} a^{9} - \frac{2}{13} a^{8} + \frac{3}{13} a^{7} + \frac{9}{26} a^{6} - \frac{3}{26} a^{5} + \frac{11}{26} a^{4} - \frac{3}{13} a^{3} + \frac{5}{13} a^{2} - \frac{1}{26} a - \frac{6}{13}$, $\frac{1}{26} a^{15} - \frac{2}{13} a^{13} + \frac{2}{13} a^{12} + \frac{5}{26} a^{11} - \frac{5}{26} a^{10} + \frac{3}{13} a^{9} + \frac{1}{13} a^{8} - \frac{11}{26} a^{7} + \frac{3}{13} a^{6} + \frac{4}{13} a^{5} - \frac{4}{13} a^{4} - \frac{9}{26} a^{3} + \frac{9}{26} a^{2} - \frac{6}{13}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{7}{2} a^{15} - 22 a^{14} + \frac{129}{2} a^{13} - \frac{191}{2} a^{12} + \frac{39}{2} a^{11} + 166 a^{10} - \frac{479}{2} a^{9} + 49 a^{8} + \frac{441}{2} a^{7} - 178 a^{6} + \frac{63}{2} a^{5} + \frac{133}{2} a^{4} - \frac{95}{2} a^{3} + 18 a^{2} - \frac{9}{2} a + 1 \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 1343.40485149 \)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$D_4^2.C_2$ (as 16T376):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 128
The 20 conjugacy class representatives for $D_4^2.C_2$
Character table for $D_4^2.C_2$

Intermediate fields

\(\Q(\sqrt{-3}) \), 4.0.1008.1, 4.0.3024.2, 4.0.432.1, 8.0.62705664.2, 8.0.146313216.1, 8.0.62705664.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/43.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$3$3.8.7.1$x^{8} + 3$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
3.8.7.1$x^{8} + 3$$8$$1$$7$$QD_{16}$$[\ ]_{8}^{2}$
$7$7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.2.1.2$x^{2} + 14$$2$$1$$1$$C_2$$[\ ]_{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.0.1$x^{4} + x^{2} - 3 x + 5$$1$$4$$0$$C_4$$[\ ]^{4}$