Normalized defining polynomial
\( x^{16} - 6 x^{15} + 14 x^{14} - 83 x^{12} + 216 x^{11} - 199 x^{10} - 210 x^{9} + 862 x^{8} - 1110 x^{7} + 578 x^{6} + 138 x^{5} - 164 x^{4} - 390 x^{3} + 683 x^{2} - 438 x + 109 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3061100160000000000=2^{16}\cdot 3^{14}\cdot 5^{10}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $14.30$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{13} a^{14} - \frac{5}{13} a^{13} + \frac{3}{13} a^{12} - \frac{6}{13} a^{11} - \frac{3}{13} a^{10} + \frac{2}{13} a^{9} + \frac{3}{13} a^{8} + \frac{2}{13} a^{7} + \frac{1}{13} a^{6} - \frac{3}{13} a^{5} - \frac{3}{13} a^{4} - \frac{3}{13} a^{3} - \frac{6}{13} a^{2} - \frac{1}{13} a + \frac{3}{13}$, $\frac{1}{51400617151} a^{15} - \frac{574886150}{51400617151} a^{14} - \frac{1283058164}{3953893627} a^{13} - \frac{8671934673}{51400617151} a^{12} + \frac{20293158180}{51400617151} a^{11} + \frac{6090980033}{51400617151} a^{10} - \frac{643500235}{51400617151} a^{9} + \frac{21309473649}{51400617151} a^{8} + \frac{15939295551}{51400617151} a^{7} + \frac{15516788035}{51400617151} a^{6} + \frac{17006656852}{51400617151} a^{5} + \frac{25335860592}{51400617151} a^{4} - \frac{293023523}{3953893627} a^{3} + \frac{8321332667}{51400617151} a^{2} + \frac{14854654885}{51400617151} a + \frac{21573882714}{51400617151}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{5495145360}{51400617151} a^{15} + \frac{25311322742}{51400617151} a^{14} - \frac{39636540612}{51400617151} a^{13} - \frac{64317809259}{51400617151} a^{12} + \frac{379770233073}{51400617151} a^{11} - \frac{630981304914}{51400617151} a^{10} + \frac{75800548949}{51400617151} a^{9} + \frac{113128199498}{3953893627} a^{8} - \frac{2670681844193}{51400617151} a^{7} + \frac{1817158917442}{51400617151} a^{6} + \frac{250377543978}{51400617151} a^{5} - \frac{892011581055}{51400617151} a^{4} - \frac{549176230526}{51400617151} a^{3} + \frac{1641258595500}{51400617151} a^{2} - \frac{1150135214525}{51400617151} a + \frac{267482962987}{51400617151} \) (order $12$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1367.18712937 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_4\times C_8):C_2$ (as 16T114):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_4\times C_8):C_2$ |
| Character table for $(C_4\times C_8):C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\), 8.0.4665600.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $5$ | 5.8.6.3 | $x^{8} + 25 x^{4} + 200$ | $4$ | $2$ | $6$ | $C_8$ | $[\ ]_{4}^{2}$ |
| 5.8.4.2 | $x^{8} + 25 x^{4} - 250 x^{2} + 1250$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ | |