Normalized defining polynomial
\( x^{16} - 3 x^{15} + 8 x^{14} + x^{13} - 13 x^{12} + 50 x^{11} - 18 x^{10} + 52 x^{9} + 105 x^{8} - 138 x^{7} + 572 x^{6} - 400 x^{5} + 592 x^{4} - 64 x^{3} + 448 x^{2} - 128 x + 256 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(305906112217041015625=5^{12}\cdot 11^{6}\cdot 29^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $19.07$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 11, 29$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} - \frac{1}{2} a^{8} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{1}{4} a^{9} - \frac{3}{8} a^{8} - \frac{3}{8} a^{7} - \frac{1}{2} a^{6} - \frac{1}{4} a^{5} + \frac{1}{8} a^{3} - \frac{1}{2} a$, $\frac{1}{48} a^{12} + \frac{1}{48} a^{11} - \frac{1}{16} a^{9} + \frac{5}{16} a^{8} - \frac{7}{24} a^{7} + \frac{5}{24} a^{6} - \frac{1}{12} a^{5} + \frac{1}{48} a^{4} - \frac{11}{24} a^{3} - \frac{1}{6} a^{2} + \frac{1}{3}$, $\frac{1}{96} a^{13} - \frac{1}{96} a^{12} - \frac{1}{48} a^{11} - \frac{1}{32} a^{10} + \frac{7}{32} a^{9} - \frac{11}{24} a^{8} + \frac{19}{48} a^{7} - \frac{1}{4} a^{6} - \frac{13}{32} a^{5} + \frac{1}{4} a^{4} + \frac{3}{8} a^{3} + \frac{1}{6} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3648} a^{14} + \frac{7}{3648} a^{13} + \frac{5}{608} a^{12} + \frac{39}{1216} a^{11} - \frac{145}{1216} a^{10} + \frac{181}{912} a^{9} - \frac{769}{1824} a^{8} + \frac{67}{456} a^{7} - \frac{359}{3648} a^{6} - \frac{28}{57} a^{5} - \frac{29}{912} a^{4} - \frac{9}{19} a^{3} - \frac{11}{228} a^{2} - \frac{5}{19} a + \frac{9}{19}$, $\frac{1}{3077219991936} a^{15} - \frac{71310717}{1025739997312} a^{14} + \frac{1191123313}{769304997984} a^{13} + \frac{22054896841}{3077219991936} a^{12} - \frac{15935642089}{3077219991936} a^{11} - \frac{151735044301}{1538609995968} a^{10} - \frac{112236108867}{512869998656} a^{9} - \frac{118948434621}{256434999328} a^{8} + \frac{198962313427}{1025739997312} a^{7} + \frac{485189296793}{1538609995968} a^{6} + \frac{34376822633}{769304997984} a^{5} - \frac{49101315023}{384652498992} a^{4} + \frac{92669555263}{192326249496} a^{3} + \frac{14006050387}{48081562374} a^{2} + \frac{12174596225}{48081562374} a - \frac{5943577949}{24040781187}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1541.5913041 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3.C_2$ (as 16T542):
| A solvable group of order 256 |
| The 40 conjugacy class representatives for $C_2^4.C_2^3.C_2$ |
| Character table for $C_2^4.C_2^3.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.2.39875.2, 4.4.725.1, 4.2.1375.1, 8.2.5781875.1, 8.2.17490171875.1, 8.4.1590015625.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.4.2.1 | $x^{4} + 143 x^{2} + 5929$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 11.8.4.1 | $x^{8} + 484 x^{4} - 1331 x^{2} + 58564$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $29$ | 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |