Normalized defining polynomial
\( x^{16} - 4 x^{14} - 16 x^{13} + 136 x^{12} + 160 x^{11} - 316 x^{10} - 496 x^{9} + 1174 x^{8} + 5104 x^{7} + 7652 x^{6} + 7040 x^{5} + 5336 x^{4} + 4720 x^{3} + 6172 x^{2} + 4608 x + 2897 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30467756702686506909696=2^{52}\cdot 3^{4}\cdot 17^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $25.42$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a$, $\frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{6} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{12} a^{11} - \frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{12} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{5}{12} a^{3} + \frac{5}{12} a^{2} + \frac{5}{12} a + \frac{1}{12}$, $\frac{1}{12} a^{12} - \frac{1}{4} a^{8} - \frac{1}{6} a^{7} - \frac{1}{6} a^{6} + \frac{1}{6} a^{5} - \frac{1}{4} a^{4} - \frac{1}{6} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2} a + \frac{1}{12}$, $\frac{1}{12} a^{13} - \frac{1}{4} a^{9} - \frac{1}{6} a^{8} - \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{4} a^{5} - \frac{1}{6} a^{4} - \frac{1}{6} a^{3} - \frac{1}{2} a^{2} + \frac{1}{12} a$, $\frac{1}{1428} a^{14} - \frac{4}{119} a^{13} - \frac{11}{357} a^{12} + \frac{11}{1428} a^{11} - \frac{6}{119} a^{10} + \frac{19}{84} a^{9} - \frac{205}{1428} a^{8} - \frac{5}{34} a^{7} + \frac{185}{1428} a^{6} - \frac{313}{714} a^{5} + \frac{55}{238} a^{4} + \frac{199}{1428} a^{3} - \frac{95}{714} a^{2} - \frac{99}{476} a - \frac{97}{1428}$, $\frac{1}{33593928315086059677204} a^{15} + \frac{1327840535568726157}{16796964157543029838602} a^{14} + \frac{115410877075637239900}{2799494026257171639767} a^{13} + \frac{95850834599317346093}{8398482078771514919301} a^{12} - \frac{15718609260480087757}{1199783154110216417043} a^{11} - \frac{52711751895911867379}{1599710872146955222724} a^{10} - \frac{1754397240975075215369}{11197976105028686559068} a^{9} + \frac{573769914452467706567}{33593928315086059677204} a^{8} - \frac{4288912276389883454141}{33593928315086059677204} a^{7} + \frac{350628590791514195612}{8398482078771514919301} a^{6} - \frac{1652683145614844451851}{8398482078771514919301} a^{5} + \frac{256587612606524463899}{2399566308220432834086} a^{4} - \frac{4120284866956209783334}{8398482078771514919301} a^{3} + \frac{5049496208860118893}{94100639538056189572} a^{2} - \frac{2015673644687772988993}{33593928315086059677204} a + \frac{1426088428617398955119}{33593928315086059677204}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{11462221873183071518}{8398482078771514919301} a^{15} - \frac{682787494927165135}{4799132616440865668172} a^{14} + \frac{7913586994981233313}{988056715149589990506} a^{13} + \frac{311174343118287349189}{16796964157543029838602} a^{12} - \frac{3221454077382983078153}{16796964157543029838602} a^{11} - \frac{8721125387886269559209}{33593928315086059677204} a^{10} + \frac{13482855676807499486921}{16796964157543029838602} a^{9} + \frac{3173680040436888377013}{5598988052514343279534} a^{8} - \frac{46062397761785123019403}{16796964157543029838602} a^{7} - \frac{71040095731918714153701}{11197976105028686559068} a^{6} - \frac{3659006798713823742980}{494028357574794995253} a^{5} - \frac{76387297029472233539747}{16796964157543029838602} a^{4} - \frac{37176878835790367213318}{8398482078771514919301} a^{3} - \frac{187587089363202319046939}{33593928315086059677204} a^{2} - \frac{43131934561142816723003}{8398482078771514919301} a - \frac{25941265716177496248835}{5598988052514343279534} \) (order $16$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 145538.831483 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T203):
| A solvable group of order 128 |
| The 41 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-2}) \), 4.0.2048.2, \(\Q(\zeta_{16})^+\), \(\Q(\zeta_{8})\), \(\Q(\zeta_{16})\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 3.4.0.1 | $x^{4} - x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $17$ | $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{17}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.1 | $x^{2} - 17$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 17.2.1.2 | $x^{2} + 51$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |