Normalized defining polynomial
\( x^{16} - 30 x^{14} + 440 x^{12} - 4055 x^{10} + 25535 x^{8} - 112750 x^{6} + 344400 x^{4} - 672400 x^{2} + 672400 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(30400667142400000000000000=2^{20}\cdot 5^{14}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $39.15$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8}$, $\frac{1}{5} a^{9}$, $\frac{1}{10} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2}$, $\frac{1}{10} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3}$, $\frac{1}{2460} a^{12} + \frac{13}{615} a^{10} + \frac{28}{615} a^{8} + \frac{3}{164} a^{6} + \frac{35}{164} a^{4} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{2460} a^{13} + \frac{13}{615} a^{11} + \frac{28}{615} a^{9} + \frac{3}{164} a^{7} + \frac{35}{164} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{13685496600} a^{14} + \frac{8173}{684274830} a^{12} - \frac{31789547}{684274830} a^{10} - \frac{159686899}{2737099320} a^{8} - \frac{351995433}{912366440} a^{6} - \frac{14007482}{68427483} a^{4} + \frac{417071}{3337926} a^{2} + \frac{448970}{1668963}$, $\frac{1}{13685496600} a^{15} + \frac{8173}{684274830} a^{13} - \frac{31789547}{684274830} a^{11} - \frac{159686899}{2737099320} a^{9} - \frac{351995433}{912366440} a^{7} - \frac{14007482}{68427483} a^{5} + \frac{417071}{3337926} a^{3} + \frac{448970}{1668963} a$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{150227}{1368549660} a^{14} - \frac{3797767}{1368549660} a^{12} + \frac{11693633}{342137415} a^{10} - \frac{118563291}{456183220} a^{8} + \frac{30165399}{22809161} a^{6} - \frac{1243923115}{273709932} a^{4} + \frac{16721053}{1668963} a^{2} - \frac{5921105}{556321} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2094284.04167 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2^2\times C_4).C_2^4$ (as 16T471):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $(C_2^2\times C_4).C_2^4$ |
| Character table for $(C_2^2\times C_4).C_2^4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 4.4.5125.1, 4.0.1025.1, 8.0.26265625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.6 | $x^{8} + 2 x^{7} + 2 x^{6} + 16 x^{2} + 16$ | $2$ | $4$ | $8$ | $(C_8:C_2):C_2$ | $[2, 2, 2]^{4}$ |
| 2.8.12.8 | $x^{8} + 2 x^{6} + 80$ | $2$ | $4$ | $12$ | $(C_8:C_2):C_2$ | $[2, 2, 3]^{4}$ | |
| $5$ | 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 5.8.7.2 | $x^{8} - 20$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $41$ | 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.3 | $x^{4} + 246$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 41.4.0.1 | $x^{4} - x + 17$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |