Normalized defining polynomial
\( x^{16} - 8 x^{15} + 116 x^{14} - 552 x^{13} + 4636 x^{12} - 17024 x^{11} + 97564 x^{10} - 298656 x^{9} + 1206042 x^{8} - 3186136 x^{7} + 8682804 x^{6} - 17888024 x^{5} + 34056956 x^{4} - 49012432 x^{3} + 62192636 x^{2} - 51389008 x + 32169161 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(303413777032806400000000000000=2^{44}\cdot 5^{14}\cdot 41^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $69.60$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{4} a^{8} + \frac{1}{4}$, $\frac{1}{4} a^{9} + \frac{1}{4} a$, $\frac{1}{4} a^{10} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} + \frac{1}{4} a^{3}$, $\frac{1}{4} a^{12} + \frac{1}{4} a^{4}$, $\frac{1}{44} a^{13} - \frac{5}{44} a^{12} - \frac{1}{44} a^{11} + \frac{1}{44} a^{10} + \frac{1}{44} a^{9} + \frac{1}{22} a^{8} - \frac{3}{11} a^{7} + \frac{5}{11} a^{6} - \frac{19}{44} a^{5} - \frac{17}{44} a^{4} + \frac{1}{4} a^{3} + \frac{13}{44} a^{2} - \frac{7}{44} a + \frac{5}{22}$, $\frac{1}{44} a^{14} - \frac{1}{11} a^{12} - \frac{1}{11} a^{11} - \frac{5}{44} a^{10} - \frac{1}{11} a^{9} - \frac{1}{22} a^{8} + \frac{1}{11} a^{7} - \frac{7}{44} a^{6} + \frac{5}{11} a^{5} - \frac{2}{11} a^{4} - \frac{5}{11} a^{3} + \frac{3}{44} a^{2} + \frac{2}{11} a + \frac{3}{22}$, $\frac{1}{721458280780865384771024749688972332227499475117444} a^{15} - \frac{418999752427320625187095113408846652720717705617}{721458280780865384771024749688972332227499475117444} a^{14} + \frac{462442230928407455173259895311994120628205444805}{721458280780865384771024749688972332227499475117444} a^{13} + \frac{80383534723353998870083800208618221029771181829815}{721458280780865384771024749688972332227499475117444} a^{12} - \frac{4043925545780218883533957553159561565497904335702}{180364570195216346192756187422243083056874868779361} a^{11} - \frac{45013586769391887407622213478324398359291493198009}{721458280780865384771024749688972332227499475117444} a^{10} + \frac{3505763796220180904032404135437664750957150723089}{32793558217312062944137488622226015101249976141702} a^{9} - \frac{12970213324835816510430906960849260000218551212717}{180364570195216346192756187422243083056874868779361} a^{8} + \frac{16050847979564396557719675821587228287653241801017}{721458280780865384771024749688972332227499475117444} a^{7} - \frac{314326199631837219719939429540925186174943664659241}{721458280780865384771024749688972332227499475117444} a^{6} - \frac{330315275362657544026094450681209308052045716243687}{721458280780865384771024749688972332227499475117444} a^{5} - \frac{20639277200455670408347250517502864603036188083537}{721458280780865384771024749688972332227499475117444} a^{4} + \frac{33672987965795967011754243034148452911520176132043}{180364570195216346192756187422243083056874868779361} a^{3} + \frac{63863130010716476723040452504507495654456484294983}{721458280780865384771024749688972332227499475117444} a^{2} - \frac{140884934245523092684889760688269483993787620570517}{360729140390432692385512374844486166113749737558722} a - \frac{83100647417125303202146033988368013091065376876068}{180364570195216346192756187422243083056874868779361}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{942}$, which has order $15072$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7114.13535725 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T315):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), 4.4.8000.1, \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\zeta_{40})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| 41 | Data not computed | ||||||