Normalized defining polynomial
\( x^{16} - 2 x^{15} + 13 x^{14} - 36 x^{13} + 124 x^{12} - 310 x^{11} + 880 x^{10} - 1475 x^{9} + 1639 x^{8} - 115 x^{7} - 888 x^{6} + 1563 x^{5} - 373 x^{4} + 1494 x^{3} - 1640 x^{2} - 160 x + 2224 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(3023219197928805422265625=5^{8}\cdot 29^{4}\cdot 149^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $33.89$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{10} - \frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{10} a^{12} - \frac{1}{5} a^{11} - \frac{2}{5} a^{10} + \frac{3}{10} a^{9} + \frac{1}{10} a^{8} - \frac{2}{5} a^{7} - \frac{3}{10} a^{6} - \frac{1}{10} a^{4} - \frac{1}{10} a^{3} - \frac{3}{10} a^{2} - \frac{1}{2} a + \frac{2}{5}$, $\frac{1}{10} a^{13} + \frac{1}{5} a^{11} - \frac{1}{2} a^{10} - \frac{3}{10} a^{9} - \frac{1}{5} a^{8} - \frac{1}{10} a^{7} + \frac{2}{5} a^{6} - \frac{1}{10} a^{5} - \frac{3}{10} a^{4} - \frac{1}{2} a^{3} - \frac{1}{10} a^{2} + \frac{2}{5} a - \frac{1}{5}$, $\frac{1}{77140} a^{14} + \frac{199}{5510} a^{13} + \frac{85}{2204} a^{12} - \frac{9587}{38570} a^{11} + \frac{1877}{7714} a^{10} + \frac{13557}{38570} a^{9} - \frac{345}{1102} a^{8} + \frac{31211}{77140} a^{7} + \frac{24259}{77140} a^{6} - \frac{7739}{77140} a^{5} - \frac{7803}{38570} a^{4} + \frac{17191}{77140} a^{3} - \frac{5233}{11020} a^{2} + \frac{7421}{38570} a + \frac{341}{3857}$, $\frac{1}{11346132749172815399960} a^{15} + \frac{182990614523823}{39124595686802811724} a^{14} + \frac{27483233602665850607}{1620876107024687914280} a^{13} + \frac{653599263195809747}{2836533187293203849990} a^{12} + \frac{48224748082578544}{193884701797211473} a^{11} + \frac{2156119452785886726753}{5673066374586407699980} a^{10} + \frac{702577553577551086444}{1418266593646601924995} a^{9} - \frac{5010918563737181905147}{11346132749172815399960} a^{8} + \frac{33276898031435511337}{119432976307082267368} a^{7} - \frac{30798237080579608589}{1031466613561165036360} a^{6} + \frac{930930865158114207847}{2836533187293203849990} a^{5} + \frac{414348398397492189251}{2269226549834563079992} a^{4} + \frac{721364863675622743371}{11346132749172815399960} a^{3} - \frac{247730019907300053569}{515733306780582518180} a^{2} - \frac{961080788647284490463}{2836533187293203849990} a + \frac{120644945700005243936}{1418266593646601924995}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 75079.232878 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.C_2^3$ (as 16T392):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^4.C_2^3$ |
| Character table for $C_2^4.C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.0.3725.1, 4.4.725.1, 4.0.108025.1, 8.0.11669400625.4, 8.4.11669400625.2, 8.4.11669400625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $149$ | 149.2.1.2 | $x^{2} + 298$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 149.2.1.2 | $x^{2} + 298$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 149.4.2.1 | $x^{4} + 745 x^{2} + 199809$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |