Normalized defining polynomial
\( x^{16} - 4 x^{14} - 4 x^{13} + 8 x^{12} + 56 x^{11} - 2 x^{10} - 124 x^{9} + 333 x^{8} + 472 x^{7} - 510 x^{6} - 136 x^{5} + 498 x^{4} - 400 x^{3} + 172 x^{2} - 40 x + 4 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(29960650073923649536=2^{32}\cdot 17^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $16.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{6} a^{8} - \frac{1}{2} a^{4} + \frac{1}{3}$, $\frac{1}{6} a^{9} - \frac{1}{2} a^{5} + \frac{1}{3} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{6} + \frac{1}{3} a^{2}$, $\frac{1}{18} a^{11} + \frac{1}{18} a^{8} + \frac{1}{18} a^{7} - \frac{2}{9} a^{6} - \frac{1}{9} a^{5} - \frac{7}{18} a^{4} + \frac{1}{9} a^{2} + \frac{2}{9} a + \frac{2}{9}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{9} + \frac{1}{18} a^{8} + \frac{1}{9} a^{7} - \frac{4}{9} a^{6} - \frac{1}{18} a^{5} - \frac{1}{3} a^{4} + \frac{4}{9} a^{3} - \frac{1}{9} a^{2} - \frac{4}{9} a - \frac{1}{3}$, $\frac{1}{18} a^{13} + \frac{1}{18} a^{10} + \frac{1}{18} a^{9} - \frac{1}{18} a^{8} - \frac{1}{9} a^{7} - \frac{7}{18} a^{6} - \frac{7}{18} a^{4} + \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3}$, $\frac{1}{13878} a^{14} - \frac{2}{2313} a^{13} + \frac{277}{13878} a^{12} - \frac{173}{6939} a^{11} - \frac{1067}{13878} a^{10} + \frac{154}{2313} a^{9} + \frac{5}{4626} a^{8} - \frac{80}{6939} a^{7} + \frac{325}{771} a^{6} - \frac{1877}{6939} a^{5} - \frac{866}{2313} a^{4} + \frac{211}{2313} a^{3} + \frac{328}{771} a^{2} + \frac{3295}{6939} a - \frac{2797}{6939}$, $\frac{1}{24716718} a^{15} + \frac{6}{457717} a^{14} + \frac{104135}{12358359} a^{13} + \frac{164326}{12358359} a^{12} + \frac{264002}{12358359} a^{11} + \frac{127241}{4119453} a^{10} + \frac{44281}{915434} a^{9} - \frac{1904887}{24716718} a^{8} - \frac{356471}{2746302} a^{7} + \frac{3411115}{12358359} a^{6} + \frac{3115939}{8238906} a^{5} - \frac{2632133}{8238906} a^{4} + \frac{900962}{4119453} a^{3} - \frac{859088}{12358359} a^{2} - \frac{2244901}{12358359} a + \frac{1913384}{4119453}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{4165333}{8238906} a^{15} + \frac{4182689}{24716718} a^{14} - \frac{16273721}{8238906} a^{13} - \frac{33173138}{12358359} a^{12} + \frac{78711025}{24716718} a^{11} + \frac{727356299}{24716718} a^{10} + \frac{36091781}{4119453} a^{9} - \frac{248511200}{4119453} a^{8} + \frac{1830340970}{12358359} a^{7} + \frac{1192383782}{4119453} a^{6} - \frac{4043947757}{24716718} a^{5} - \frac{529306745}{4119453} a^{4} + \frac{876322771}{4119453} a^{3} - \frac{521443820}{4119453} a^{2} + \frac{514763285}{12358359} a - \frac{64830371}{12358359} \) (order $8$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 5277.21342233 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times D_4$ (as 16T9):
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $D_4\times C_2$ |
| Character table for $D_4\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $17$ | 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 17.4.2.1 | $x^{4} + 85 x^{2} + 2601$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |